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A magnetic moment in a metal or in a quantum dot is, at low temperatures, screened by the conduction
electrons through the mechanism of the Kondo effect. This gives rise to spin-spin correlations between the
magnetic moment and the conduction electrons, which can have a substantial spatial extension. We study this
phenomenon, the so-called Kondo cloud, by means of the density matrix renormalization group method for the
case of the single-impurity Anderson model. We focus on the question whether the Kondo screening length,
typically assumed to be proportional to the inverse Kondo temperature, can be extracted from the spin-spin
correlations. For several mechanisms—the gate potential and a magnetic field—which destroy the Kondo
effect, we investigate the behavior of the screening cloud induced by these perturbations.
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I. INTRODUCTION

The Kondo effect,1 a well-known feature of magnetic im-
purity systems, has seen a tremendous renewed interest due
to the realization of quantum dots and nanoscale systems.2

The existence of Kondo correlations at low temperatures T
has been firmly established in numerous experiments on
quantum dots,3 molecules,4 and carbon nanotubes.5 The in-
teraction of an impurity spin with itinerant electrons, causing
the Kondo effect, manifests itself in spatially extended spin-
spin correlations—the Kondo screening cloud. These corre-
lations have been extensively studied in theory6–15 and many
proposals for experimentally measuring the Kondo screening
cloud have been put forward.9,11,14,15 Also, several studies
have emphasized the emergence of mesoscopic fluctuations
on finite systems, and the existence of even-odd effects in the
Kondo cloud when computed from a lattice model.8,9,11,16,17

While there has been experimental progress toward the mea-
surement of the Kondo cloud,18,19 the detection of the spin-
spin correlations has proven to be highly challenging and has
not been accomplished so far. Depending on the Kondo tem-
perature TK, the Kondo cloud can have a significant exten-
sion of �1 �m.13

In our work, we examine the spin-spin correlations in a
real-space model, the single-impurity Anderson model
�SIAM� that includes charge fluctuations, using the density
matrix renormalization group method �DMRG�.20–22 We ad-
dress two main questions: first, we compute the spin-spin
correlations between the impurity spin and the conduction
electrons at particle-hole symmetry and discuss how the
Kondo screening length �K can be directly extracted from
such data. To that end, we discuss several ways of collapsing
spin-spin correlations calculated for different Kondo tem-
peratures onto a universal curve. In this analysis, we employ
ideas suggested by Gubernatis et al.6 that have also been
used in previous DMRG studies of the Kondo cloud
problem.11,12 We find that from chains of about L=500 sites,

suitable measures for the L=� screening length can be ex-
tracted for Kondo temperatures of kBTK /��1·10−3 �� is the
tunneling rate�. Knowledge of the universal curve further
allows us to estimate �K even for Kondo temperatures for
which the accessible system sizes are too small to host the
full Kondo cloud. As a main result of our analysis, we find
that our measures of �K extracted from the spin-spin correla-
tions have the same functional dependence on model param-
eters as �K

0

�K
0 = �vF/TK, �1�

at particle-hole symmetry �vF is the Fermi velocity in the
leads, we adopt kB=1 throughout the rest of this work�. The
screening length �K

0 governs the finite-size scaling of local
quantities such as the polarization or the magnetic moment.8

Second, we consider several mechanisms that destroy
Kondo correlations, namely, a gate voltage and a magnetic
field applied to the quantum dot. We study the changes in the
screening length induced by a variation in these parameters.
We argue that computing the magnetic-field dependence of
the screening length provides a means of extracting the
Kondo temperature.

The emergence of an exponentially small energy scale in
the Kondo problem, namely, TK, restricts any real-space ap-
proach with respect to the Kondo temperatures that can be
accessed. A powerful framework was introduced by Wilson23

in the form of the numerical renormalization group �NRG�
method,23,24 which is explicitly tailored toward the Kondo
problem. This is achieved through the introduction of a loga-
rithmic energy discretization that allows the Kondo scale to
be resolved but loses real-space information. Recently, an
NRG method has been developed to access spatially resolved
quantities,13,14,25 extending some older NRG calculations for
spatially dependent correlation functions.26 Using the more
recent NRG approach,13 the spin correlations between the
impurity and the sites in the leads have been computed for
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the Kondo model, and it has been shown that at the Kondo
screening length �K

0 , the envelope of the correlations crosses
over from a 1 /x decay at distances x��K

0 to a 1 /x2 decay at
distances x��K

0 , where x denotes the distance between the
impurity and a site in the leads.

Comparing NRG and DMRG, first, there are technical
differences between DMRG and NRG with respect to how
the spin-spin correlations �S� i ·S� j� �S� i denotes a spin-1/2 op-
erator at site i� are obtained. NRG requires a separate run for
each pair of indices, �i , j�, whereas DMRG operates directly
on real-space leads. That way, after calculating the ground
state for a system of a given length, all correlations can be
evaluated in a single run. While the use of real-space chains
is restricted to one dimension, which is the case of interest in
our work, NRG in principle works for higher dimensions too.
Second, using DMRG, we can gain direct and easy informa-
tion on the finite-size scaling of spin-spin correlations, which
we heavily exploit in our analysis. Most importantly, DMRG
can also be applied to quantum-impurity problems with in-
teracting leads12 that NRG is not designed for.

DMRG has previously been used to study the Kondo
cloud in several papers, for both the single-impurity Ander-
son model11 and the Kondo model.8,10 In Ref. 11 by Hand et
al., in particular, an interesting relation between the screen-
ing length as extracted from the spin correlations and the
weight of the Kondo resonance has been discussed. Our
study extends the DMRG literature as we consider the
mixed-valence regime, the effect of a magnetic field, and we
discuss and demonstrate the universal scaling of spin-spin
correlations for a wide range of parameters. Moreover, in the
absence of a magnetic field, we exploit the SU�2� symmetry
of the model in the spin sector in the DMRG simulations,
which we find is crucial for efficiently obtaining reliable nu-
merical results.

Besides the conceptual interest in understanding the scal-
ing properties of the Kondo screening length with both sys-
tem size and Kondo temperature, our results are relevant to
gauge the range of validity of numerical approaches for cal-
culating the conductance of nanostructures that employ a
real-space representation of the leads such as time-dependent
DMRG simulations of transport in the single-impurity
Anderson model.27–29 Moreover, the approaches discussed
here to extract the screening length could be applicable to
more complex geometries in a straightforward way, for in-
stance, to multichannel and/or multidot problems.

Our work is organized as follows. In Sec. II, we introduce
our model and define the quantities of interest. In Sec. III,
the spin-spin correlations constituting the Kondo cloud are
investigated and we demonstrate how to extract the value of
the Kondo screening length �K from the spin-correlation
data, making use of the universal finite-size scaling behavior
of �K. We proceed with a discussion of the behavior of the
screening length upon driving the system away from the
Kondo point via a gate potential, presented in Sec. IV, and
then turn to the case of a magnetic field in Sec. V. We con-
clude with a summary, Sec. VI, while technical detail on the
method and computations are given in the Appendix.

II. MODEL

We model a quantum dot coupled to a lead by the single-
impurity Anderson model, describing the lead by a tight-

binding noninteracting chain. This constitutes a one-channel
problem

H = �
	=↑,↓


dnd	 + BSd
z + Und↑nd↓

− t�
	

�
i=1

L−1

�ci	
† c�i+1�	 + h.c.�

− �
	

�2t��c1	
† d	 + h.c.� . �2�

ci	 annihilates an electron with spin 	= ↑ ,↓ on site i,
d	 annihilates an electron with spin 	 on the dot, and
nd	=d	

†d	. The spin operators at any site are given by
Si

a=cis
† 	ss�

a cis� /2, where 	a are the Pauli matrices �a=x ,y ,z�.

d denotes the gate potential and B denotes the magnetic field
applied to the dot, U denotes the strength of the Coulomb
interaction on the quantum dot, t� denotes the hopping of the
dot levels to the first site in the lead, t denotes the hopping
within the lead. The width of the dot level due to the hybrid-
ization with the lead is given by �=2t�2 / t.

In the absence of a magnetic field, this model has a spin
SU�2� symmetry. In our analysis, we calculate the ground
state of this system via DMRG using an implementation30

exploiting the SU�2� symmetry, which greatly improves the
efficiency31,32 �see the Appendix for more detail�. A typical
run for L=500 sites with m=1500 states took about 60 h on
a 2.6 GHz Opteron CPU.

All simulations, irrespective of 
d, are performed at half-
filling of the full system. As the Kondo scale depends expo-
nentially on U /�, while in a real-space representation of the
leads, the energy resolution is proportional to 1 /L, we re-
strict our analysis to the intermediate values of U /�. The
trade-off for these limitations is that it is straightforward to
calculate spin correlators, as outlined below �see Eq. �3�	.

Throughout this work, we use chains with an overall even
number of sites. It is well known that there are significant
even-odd effects in impurity problem of this kind.8,9,11,16,17

Earlier work �see, e.g., Ref. 33�, suggests that the conver-
gence with system size toward a Kondo state is much faster
on chains with an even number of sites. We thus work in
singlet subspaces.

III. SPIN-SPIN CORRELATIONS AND KONDO
SCREENING LENGTH AT �d=−U Õ2

In this section, we present our results for the spin-spin-
correlation function at particle-hole symmetry and we dis-
cuss two ways of collapsing the data, allowing for a deter-
mination of the Kondo screening length. In order to
investigate the behavior of the Kondo screening length, we
shall study the following integrated spin-correlation function

��x� = 1 + �
i=1

x
�S�d · S� i�

�S�d · S�d�
, �3�

to be evaluated in the singlet subspace of the total spin S� tot

=S�d+�i=1
L−1S� i, and under the assumption that �S�d

2��0 �x is
given in units of the lattice constant�. This definition is mo-
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tivated by the following convenient properties: �i� the decay
of ��x� with x characterizes the extent to which the total spin
of chain sites one to x is able to screen the spin on the
impurity level, i.e., the extent to which �i=1

x S� i has, crudely
speaking, “become equal and opposite” to S�d. �ii� When the
sum includes the entire chain, we always have ��L−1�=0.
This follows by noting that in the subspace with zero total
spin, where �S� tot

2 �=0, we have �S�d
2�= ���i=1

L−1S� i�2�, and hence
also �S� tot

2 �=2�S�d ·S�d���L−1�. �iii� The correlator is normal-
ized to ��0�=1. �iv� In the absence of a magnetic field, ��x�
is SU�2� invariant, such that this symmetry can be exploited
in our numerics. In the presence of a magnetic field, we shall
use a symmetry-broken version, replacing �S�d ·S� i� / �S�d ·S�d� by
��Sd

zSi
z�− �Sd

z��Si
z�� / ��Sd

zSd
z�− �Sd

z�2�.
As an example, the inset of Fig. 1 shows a DMRG result

for the absolute value of the bare spin-spin correlator �S�d ·S� i�.
The feature at i�200 is a simple effect of the open boundary
conditions. The spin correlations for i smaller than a certain
value �here roughly i�200� oscillate between negative and
positive, while beyond a certain point, all �S�d ·S� i� become
positive. This feature at i�200 precisely appears at the site
where this happens, i.e., where �S�d ·S� i� with i even changes
its sign and, as a consequence, the correlator passes arbi-
trarily close through zero. Summing up the correlator accord-
ing to Eq. �3� yields ��x�, plotted in the main panel.

The notion of a screening length is based on the premise
that the decay of ��x� follows a universal form characterized
by a single length scale, �K, as long as this scale is signifi-
cantly shorter than the system size, �K�L. �According to the
expectation that �K�vF /TK, this condition is equivalent to
the following statement: perfect spin screening in a system of
finite size L can only be achieved if the level spacing, which
scales like �vF /L, is smaller than TK.� Whenever this condi-
tion is not met, the shape of the decay of ��x� with x deviates
from its universal form once x becomes large enough such
that the finite system size makes itself felt �via the boundary
condition ��L−1�=0	. To extract �K from DMRG data ob-
tained for finite-sized systems, we thus need a strategy for
dealing with this complication. Below, we shall describe two
different approaches that accomplish this, both involving a
scaling analysis.

To check whether the screening length obtained using ei-
ther of the two scaling strategies conforms to the theoretical
expectations, we shall check whether its dependence on the
parameters U, �, and 
d agrees with that of the length scale
�K

0 =
�vF

TK
�Eq. �1�	. Using the known form of the Kondo tem-

perature TK for the Anderson model,34,35 this dependence is
given by

�K
0 


�vF

�U�
exp���
d��
d + U�

2U�
 . �4�

We shall indeed find a proportionality of the form �K
= p�K

0 , where the numerical prefactor p reflects the fact that
the definition of TK involves an arbitrary choice of a prefac-
tor on the order of one. We emphasize, however, that our
determination of �K will be carried out without invoking Eq.
�4�; rather, our results for �K will turn out to confirm Eq. �4�
a posteriori. In the present section we shall focus on the
symmetric Anderson model �
d=−U /2� at zero magnetic
field, considering more general cases in Sec. IV.

A. Scaling collapse of �(x)

The first way of extracting the screening length is to plot
��x� versus x /�K, where �K is treated as a fitting parameter,
to be chosen such that all the curves collapse onto the same
scaling curve �see Fig. 2	. When attempting to collapse the
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FIG. 1. �Color online� Integrated spin-spin correlations ��x�
�from Eq. �3�	 for systems of different sizes at U=1,�=0.20 and

d=−U /2. As an example, the threshold of 0.1 that we use in Eq.
�5� to extract �0.9 is indicated by the dashed horizontal line. As an
illustration of the typical raw data, we show the absolute value of
the spin-spin correlations ��S�d ·S� i�� for L=300 in the inset.
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FIG. 2. �Color online� �a� Rescaled integrated spin-spin correla-
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��x� data, one faces two issues. First, the ��x� data are non-
monotonic in L, due to the fact that the sign of �S�d ·S� i� oscil-
lates, and for curves scaled by different values of �K, the
oscillations are stretched by different amounts on a semilog
plot. This introduces some “noise” to the ��x� curves, mak-
ing it somewhat difficult to decide when the scaling collapse
is optimal. Second, for some parameter combinations, the
condition �K�L is not met, and, therefore, perfect scaling
cannot be expected for all the curves.

These issues can be dealt with by a two-step strategy: �i�
we start with the curves, which collapse the best, namely,
those with the smallest U /� ratios. These yield the smallest
�K values and hence satisfy the condition �K�L required for
good scaling well enough such that the shape of the universal
scaling curve can be established unambiguously �to the ex-
tent allowed by the aforementioned noise�. �ii� We then pro-
ceed to larger ratios of U /�, which yield larger �K, and ad-
just �K such that a good collapse of ��x� vs x /�K onto the
universal curve is achieved in the regime of small x /�K,
where finite-size effects are not yet felt. Thus, knowledge of
the universal scaling curve allows �K to be extracted even
when the condition �K�L is not fully met.

The result of such a scaling analysis is shown in Fig. 2�a�.
A universal scaling curve can clearly be discerned, with de-
viations from scaling evident in the curves with large U /�,
as expected. Moreover, Fig. 2�b� shows that the results for �K
extracted from ��x� scaling agree rather well with the param-
eter dependence expected from Eq. �4� for p / ��vF� ·�K

0 �with
a prefactor of p=6.8�, provided that U /��2. For smaller
U /�, no well-defined local moment will form and the
premise for Eq. �4� no longer holds.

B. Scaling collapse of �a(L)

A second strategy for extracting the screening length, fol-
lowing Refs. 6, 11, and 12, is to determine the length, say �a,
on which the integrated spin-correlation function ��x� has
dropped by a factor of a of its x=0 value �for instance, a
=0.9 would signify a 90% screening of the local spin�. Thus,
we define

�a�L� = min�x;��x� � 1 − a� . �5�

The argument of �a�L� serves as a reminder that this length
depends on L, since the boundary condition ��L−1�=0 al-
ways enforces perfect screening for x=L. However, once the
system size becomes sufficiently large �L��K� to accommo-
date the full screening cloud, �a�L� approaches a limiting
value, to be denoted by �a �shorthand for �a���	, which may
be taken as a measure of the true screening length �K. This is
illustrated in the main panel of Fig. 1 for a=0.9: as L in-
creases, the x values, where the ��x� curves cross the thresh-
old 1−a=0.1 �horizontal dashed line�, tend to a limiting
value. This limiting value, reached in Fig. 1 for L�300,
defines �0.9.

Figure 3 shows the L dependence of �0.9�L� for several
values of U /� ranging from 0.4 to 12.5, and system sizes up
to L=500. We observe that �0.9�L� reaches its limiting value
for small ratios of U /�, which produce �0.9 values smaller
than L=500. For larger values of U /�, however, �0.9�L� does
not saturate, implying that for these parameters, the true

screening length is too large to fit into the finite system
size.36

Nevertheless, it is possible to extract the true screening
length in the latter cases as well, by performing a two-step
finite-size scaling analysis: �i� for those parameters U /� for
which �a�L� has already saturated on a finite system, we set
�a=�a�L=500�, and plot �a�L� /�a vs L /�a. This collapses all
such curves onto a universal scaling curve. For larger U /�,
we rescale the �a�L� curves in a similar fashion, but now
using �a as a fit parameter, chosen such that the rescaled
curves collapse onto the universal curve determined in step
�i�. As shown in Fig. 4�a� for a=0.9, this strategy produces
an excellent scaling collapse for all combinations of U and �
studied here.

The above procedure requires the threshold parameter a to
be fixed arbitrarily. Qualitatively, one needs a large a to cap-
ture most of the correlations, i.e., �a�L→����K, yet a ought
not to be too close to one to avoid boundary effects in the
results. Technically, the calculation of �a is much easier the
smaller a is, as less correlators �S� i ·S�d� that are of a small
numerical value need to be computed to high accuracy �see
also the discussion in the Appendix�. For instance, at U /�
=5 and L=500, �0.9�112 sites, while �0.75�29 sites.

We have carefully analyzed the qualitative dependence of
our analysis on the threshold a. First, the universal scaling
behavior in �a�L� /�a is seen for a�0.6. Using too small a
value for a ignores the long-range behavior of ��x�. Quali-
tatively, �a needs to be close to the point, where the decay of
the envelope of spin-spin correlations changes from a power
law with 1 /x to 1 /x2 �see Fig. 2 in Ref. 13�. Second, it turns
out that different choices of a produce values of �a that differ
only by a �U-independent and �-independent� prefactor p�a�,
as illustrated in Fig. 4�b� �symbols�. In particular, for U /�
�2, all �a follow the same functional dependence on the
parameters U and �, satisfying the relation

�a =
p�a�
�vF

�K
0 �6�

expected from Eq. �4� �lines in Fig. 4�. It is obvious that �a
yields an upper bound to �K

0 since p�a��1 for all choices of
a.
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The only exceptions are the data points at U /�=12.5, for
which �a is too large in comparison to L=500 to yield reli-
able results. The latter are thus excluded when fitting the �a
data to determine the best values for p�a�, shown in the inset
of Fig. 4.

The inset includes the prefactor p=6.8 �horizontal dotted
line� obtained in Sec. III A, from Fig. 2, via a scaling analy-
sis of ��x� �which has the advantage of not involving any
arbitrarily chosen threshold�. Evidently, p=6.8 is rather well
matched by p�0.9��6.7, implying that the two alternative
scaling strategies explored above, based on ��x� and �a�L�,
yield essentially identical screening lengths for a=0.9. For
the remainder of this paper, where we consider 
d�−U /2 or
B�0, we shall thus determine the screening length by em-
ploying �0.9�L� scaling, which is somewhat more straightfor-
ward to implement than ��x� scaling.

IV. GATE POTENTIAL

We next investigate the behavior of the Kondo screening
length while sweeping the gate potential applied to the dot.
Qualitatively, one expects the Kondo temperature to increase
upon gating the dot away from particle-hole symmetry and
eventually, as the dot’s charge starts to deviate substantially

from one, the Kondo effect will be fully suppressed.37 Con-
sequently, we expect the Kondo cloud to shrink upon varying

d. To elucidate this behavior, we focus on values of U /�
�5.6 for which �0.9�L=500� yields a good estimate of the
true �K, as demonstrated in Sec. III.

Our results for �0.9 are presented in Fig. 5�a�. In addition,
and as an illustration, we plot the dot level occupation �nd�
= �0�nd↑+nd↓�0� in Fig. 5�b�, where �0� is the ground state of
the system, obtained via DMRG. As we shift the dot level
away from the particle-hole symmetric point at 
d=−U /2
and thus leave the Kondo regime, �0.9 falls off rapidly. This is
symmetric in the direction of the deviation from the Kondo
point. In the regime 
d�−� one would expect Eq. �4� to hold
roughly. Indeed, for 
d=−U /4, Eq. �4� still applies,38 while
for, e.g., 
d=0 this is not the case anymore. The reason is that
Eq. �4� is only valid in the Kondo regime with �nd��1. From
Fig. 5�b� we see that the dot occupation starts to decrease
quickly as we increase 
d from −U /2, implying that the mag-
netic moment decreases as well. In the mixed-valence re-
gime, 
d�−�, �0.9 measures the strength of the spin-spin
correlations not originating from Kondo physics.

V. MAGNETIC FIELD

The application of a magnetic field is known to destroy
the Kondo effect and its influence on the density of states
�DOS� and the conductance has been widely studied.39,40

Here, we investigate how the screening cloud collapses as
the magnetic moment is squeezed by the magnetic field. In
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the presence of a finite magnetic field the total spin S� is no
longer conserved but only Sz is conserved. Thus we are left
with a U�1� symmetry for Sz instead of the SU�2� symmetry
for S� . As a consequence, much more computational effort is
needed in order to achieve an accuracy similar to the zero-
field case �see the Appendix for detail�.

Our results for �i� the screening length �0.9�L=500� and
�ii� the magnetic moment of the dot �= ��Sd

z�2�− �Sd
z�2 are

displayed in Figs. 6�a� and 6�c�, respectively. As the mag-
netic field is increased but still smaller than TK, there are
almost no visible effects in �0.9 �note the logarithmic scale in
the figure�. Once the magnetic field B reaches the order of
the Kondo temperature TK, the Kondo effect gets suppressed
and the extent of the Kondo cloud shrinks rapidly. More

precisely, a pronounced decay of the screening length sets in
at B�0.5TK, in agreement with findings for the field-induced
splitting of the central peak in the impurity spectral
function.41 Qualitatively, both the screening length and the
magnetic moment � exhibit the same behavior. Note that for
small U /�, charge fluctuations reduce the magnetic moment
to lie below the value �=1 /4 applicable for the Kondo
model, which presupposes U /��1.

To identify the point at which the Kondo effect breaks
down, we again study the collapse of results from Fig. 6 onto
a universal curve. This is shown in Fig. 6�b�, and as a main
result we find

�0.9�B�
�0.9�B → 0�

 f�B/TK� , �7�

where f�x� describes the universal dependence on B /TK. We
note that due to higher numerical effort for calculations with
a finite magnetic field �as further discussed in the Appendix�
our numerical results slightly underestimate �0.9�B� at U /�
�5, in particular, at small B. This, however, has no qualita-
tive influence on the scaling collapse described by Eq. �7�.
We suggest that an analysis analogous to the one presented in
Fig. 6 could be used to extract TK for models in which the
dependence of TK on model parameters is not known. In such
an analysis, TK would be the only fitting parameter, since
�0.9�B ,L→�� can be determined along the lines of Sec. III
and one would obtain TK up to an unknown prefactor, which
is independent of U /�.

By rescaling the magnetic moment data to ��B� /��B
→0� as shown in the inset of Fig. 6�c� we again find
a universal curve very similar to the collapse of
�0.9�B� /�0.9�B→0� in Fig. 6�b�. We thus confirm that a col-
lapse of local quantities can be used to extract TK, as previ-
ously shown using DMRG.8 In principle, both a scaling
analysis of �0.9�B� and ��B� can be used to extract TK. Using
the analysis of the screening length data ��K� offers the pos-
sibility of a scaling analysis as outlined in Sec. III to reach
parameter regimes, where a convergence of the data in L has
not yet been reached. Moreover, the analysis of �K directly
unveils the relevant length scales.

VI. SUMMARY

In this work, we studied the spin-spin correlations in the
single-impurity Anderson impurity model using a state-of-
the-art implementation of the density matrix renormalization
group method. We first considered the particle-hole symmet-
ric point and discussed two ways of collapsing the system-
size-dependent data onto universal scaling curves to extract a
measure of the Kondo cloud’s extension, the screening
length �K, as a function of U /�, or TK, respectively. The first
analysis is based on a scaling collapse of the integrated cor-
relations, while the second one employs a finite-size scaling
analysis of the distance �a�L� from the impurity at which a
certain fraction a of the impurity’s magnetic moment is
screened. �a�L� /�a��� exhibits a universal dependence on
L /�a���, independently of the parameter U /�. We further
showed that for an appropriately chosen value of the param-
eter a, both approaches yield quantitatively similar estimates
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of the screening length. Our results for �K, obtained from
either of the scaling analyses, nicely follow the expected
dependence on U /�.

As DMRG works in real space, the scaling regime could
only be reached for U /�=4 and system sizes of L�500, but
even for larger U /��6, a collapse onto the universal behav-
ior could be achieved. Note that U /��4 is the regime, in
which time-dependent DMRG is able to capture Kondo cor-
relations in real-time simulations of transport27 on compa-
rable system sizes, consistent with our observations.

While NRG is better suited to access the regime of very
small Kondo temperatures TK, DMRG efficiently gives ac-
cess to the full correlation function �S�d ·S� i� in a single run. As
an outlook onto future applications, we emphasize that
DMRG allows for the calculation of the spin-spin correla-
tions in the case of interacting leads12 or out-of-equilibrium,
which is challenging if not impossible for other numerical
approaches with current numerical resources.

While the first part of our study focused on the particle-
hole symmetric point where Kondo physics is dominant, we
have further analyzed how the screening cloud is affected �i�
by varying the gate voltage and tuning the system into the
mixed-valence regime, and �ii� by applying a magnetic field
at particle-hole symmetry. The latter provides an independent
measure of the Kondo temperature, through the universal
dependence of the screening length on TK /B.

Note added: while finalizing this work, we became aware
of a related effort on the Kondo cloud, Ref. 42, using the
so-called embedded-cluster approximation, slave bosons, and
NRG. Their analysis is based on calculating the local density
of states in the leads, as a function of the distance from the
impurity.
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APPENDIX: NUMERICAL DETAIL

In this Appendix we provide detail on our numerical
method. The DMRG calculations presented in this work are
challenging for two reasons. First, we model the conduction
band with a chain of length L that provides an energy reso-
lution of 1 /L, whereas the Kondo temperature becomes ex-
ponentially small with increasing U /� �c.f. Eq. �4�	. Second,
the spin-spin correlators are long-ranged quantities making
very accurate calculations of quantities necessary that are
small compared to the unit of energy, t. The parameter con-
trolling the accuracy of our calculations is the number of
states m used to approximate the ground state during the

DMRG sweeps. Typically, we choose m=1500 �3000 at
most� for the calculation of the ground state. This results in a
residual norm per site,43 a measure for the quality of the
convergence of the calculated ground state toward an eigen-

state of the Hamiltonian, �r= ��0��Ĥ−E�2��0�, on the order
of �r

L =O�10−7�.
Figure 7 illustrates the m dependence of �0.9 for two val-

ues of U /� and two values of L at 
d=−U /2, obtained from
simulations using the SU�2� symmetry. The larger the ratio
U /� and the bigger the system size L, the higher the number
of states m, needed to be kept to obtain a well-converged
ground state, see Fig. 7. This can be understood as follows:
higher U /� implies a smaller Kondo temperature, i.e., a
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larger screening length �0.9 and longer-ranged spin-spin cor-
relators �S�d ·S� i�. A well-converged ground state requires these
to be evaluated accurately over the entire range i��0.9, and
hence more states need to be kept during the DMRG sweeps.
For the scaling analysis presented in Sec. III �see Figs. 2 and
4�, we only used data points that are converged with respect
to the number of states kept.

In Fig. 8, we illustrate that the convergence with the num-
ber of states is greatly accelerated whenever the SU�2� sym-
metry can be exploited. We compare this preferable case to
the calculations with a magnetic field, where the SU�2� sym-
metry is reduced to a U�1� symmetry. In the figure, we use a
small magnetic field of B /TK=3·10−3, such that the results
for �a�B ,L=500� coincide with the results for B=0, previ-
ously obtained from the SU�2� calculation. For instance, at
L=500 by keeping m=1500 states, �r�3·10−3 is reached in

the U�1� case as compared to �r�2·10−4 for the SU�2� case.
For U=1, �=0.32, we show that this residual norm ensures
accurate data for �a up to a=0.9, while for larger a, our U�1�
results are well below the corresponding SU�2� ones com-
puted with the same m.

Pragmatically, in the case of broken SU�2� symmetry, one
may resort to using a smaller threshold a �instead of a=0.9�,
for which the convergence with m is faster. As we have
shown in Fig. 4, �K can be extracted from �a with 0.6�a
�0.95 up to a nonuniversal prefactor using the schemes dis-
cussed in Sec. III.

In contrast to the screening length, the calculation of the
magnetic moment �, a local quantity, is much better be-
haved. Thus � does not suffer much from the slower conver-
gence of the U�1� calculation and converges quickly to a
high precision �displayed as diamonds in Fig. 8�.
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