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Abstract. We investigate the appearance of π lapses in the transmission phase θ

of a two-level quantum dot with Coulomb interaction U. Using the numerical and
functional renormalization group methods we study the entire parameter space for
spin-polarized as well as spin-degenerate dots, modelled by spinless or spinful
electrons, respectively. We investigate the effect of finite temperatures T . For
small T and sufficiently small single-particle spacings δ of the dot levels we find
π phase lapses between two transmission peaks in an overwhelming part of the
parameter space of the level-lead couplings. For large δ the appearance or not
of a phase lapse between resonances depends on the relative sign of the level-
lead couplings in analogy to the U = 0 case. We show that this generic scenario
is the same for spin-polarized and spin-degenerate dots. We emphasize that in
contrast to dots with more levels, for a two-level dot with small δ and generic dot-
lead couplings (that is up to cases with special symmetry) the ‘universal’ phase
lapse behaviour is already established at U = 0. The most important effect of the
Coulomb interaction is to increase the separation of the transmission resonances.
The relation of the appearance of phase lapses to the inversion of the population
of the dot levels is discussed. For the spin-polarized case and low temperatures
we compare our results to recent mean-field studies. For small δ correlations are
found to strongly alter the mean-field picture.
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1. Introduction

The local Coulomb interaction U > 0 of electrons occupying quantum dots leads to a variety of
effects. Many of them can conveniently be studied in transport through the dot within the linear
regime. Theoretically as well as experimentally well-investigated examples are the Coulomb
blockade (CB) peaks of the transmission (conductance) [1] as well as the plateaus of width
U of the transmission (conductance) induced by the Kondo effect [2]. Additional features of
interacting multi-level dots that have recently attracted considerable theoretical attention are
the population inversions of the dot levels [3]–[6], the phase lapses of the transmission phase
θ or, equivalently, the zeros of the transmission amplitude t (transmission zeros) [3], [7]–[12]
and correlation-induced resonances of |t| [13]. They appear in certain parts of the parameter
space when the level occupancies and the transmission amplitude are investigated as functions
of the level positions, which can be tuned via a nearby plunger gate voltage. Such effects were
mostly studied in a minimal model involving only two levels. A very important step towards a
unified understanding of population inversions, phase lapses and correlation-induced resonances
in spin-polarized two-level dots was recently taken by a multi-stage mapping of the problem on
a generalized Kondo model and a subsequent renormalization group and Bethe ansatz analysis
of the effective Hamiltonian [14]–[16].

Theoretical studies of phase lapses (transmission zeros) are of primary interest in connection
with a series of linear response transmission measurements by the Weizman group [17]–[19] on
Aharonov–Bohm rings containing a quantum dot in one arm. Under suitable conditions both the
phase θ and magnitude |t| of the transmission amplitude t = |t|eiθ of the dot can be extracted
from the Aharonov–Bohm oscillations of the current through the ring [20]. When this is done as
function of a plunger gate voltage Vg that linearly shifts the dot’s single-particle energy levels
downward, εj = ε0

j − Vg (j = 1, 2, . . . is a level index), a series of well-separated CB peaks
of rather similar width and height was observed in |t(Vg)|, across which θ(Vg) continuously
increased by π, as expected for Breit–Wigner-like resonances. In each CB valley between any
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two successive peaks, θ always jumped sharply downward by π. This phase lapse behaviour
was found to be ‘universal’, occurring in a large succession of valleys for every many-electron
dot studied in [17]–[19]. This universality is puzzling, since naively the behaviour of θ(Vg) is
expected to be ‘mesoscopic’, i.e. to show a phase lapse in some CB valleys and none in others,
depending on the dot’s shape, the parity of its orbital wavefunctions, etc. Only recently [19],
also the few-electron regime was probed experimentally: as Vg was increased to successively fill
up the dot with electrons, starting from electron number Ne = 0, θ(Vg) was observed to behave
mesoscopically in the few-electron regime, whereas the above-mentioned universal phase lapse
behaviour emerged only in the many-electron regime (Ne � 15).

It was suggested in [19] that a generic difference between the few- and many-electron dots
may be that for the latter, transport might simultaneously occur through several partially filled
single-particle levels in parallel. A possible reason could be that the mean (noninteracting) level
spacing δ of the topmost filled levels decreases as the number of electrons increases, while the
charging energy U still implies well-separated transmission resonances [21]. This scenario forms
the basis of a recent systematic study by us of the interplay of level spacing, level width and
charging energy on the phase lapses for up to four interacting levels and spin-polarized electrons
[22].We showed that the universal phase lapse and transmission zero behaviour appearing at small
δ can be understood as resulting from a Fano-type interference effect [23] involving transport
through two or more effective dot levels, whose positions and widths have been renormalized
by the Coulomb interaction and coupling to the leads. The importance of several overlapping
levels for phase lapses had earlier been pointed out by Silvestrov and Imry [3] in a rather specific
model of a single wide and several narrow levels with strong interaction (see also [12]).

Here we supplement our earlier study [22] by discussing the relation between phase lapses
and population inversions and by investigating the role of finite temperatures T > 0 as well as
spin, focusing on N = 2 levels. When spin is included, the Kondo effect plays a role for an odd
average occupation of the dot, but we will show that the phase lapse scenario is unaffected by this.
Experimentally the behaviour of the phase in the presence of the Kondo effect was investigated
in [24, 25]. As in [22] we are concerned with the generic behaviour and thus investigate the
entire parameter space, going beyond subspaces of higher symmetry (such as left–right (l–r) or
1–2 symmetry of the couplings between the left and right leads and the two levels). For low
temperatures and sufficiently small single-particle spacings δ of the dot levels, we find π phase
lapses between two transmission peaks in an overwhelmingly large part of the parameter space of
the level-lead couplings. We point out that the two level case is special compared to models with
N > 2, as for generic level-lead couplings a transmission zero and phase lapse occurs between
the two transmission peaks even at U = 0. The effect of the interaction is merely to increase the
separation of the transmission peaks. For large δ the appearance or not of phase lapses between
transmission peaks depends on the relative sign of the level-lead couplings in analogy to the
noninteracting case [9].

For spin-polarized dots we in addition compare our T = 0 results with the ones of recent
mean-field studies [10, 11]. In these works level-lead couplings beyond the subspaces with
increased symmetry were studied, and a remarkably more complex behaviour was found once
the symmetries were broken. The importance of considering such generic parameter sets was
independently pointed out in [13]. We here elucidate how the phase lapse behaviour is affected
by correlations, which are expected to be strong in low-dimensional systems. We find that upon
including correlations, the part of the parameter space exhibiting universal π phase lapses between
well-separated CB peaks becomes larger than suggested by the mean-field study. In particular,
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we do not recover certain peculiar features of the mean-field results of [10, 11] namely the
occurrence, in certain regimes of parameter space, of a phase lapse of less than π (instead of
precisely π), accompanied by the disappearance of the corresponding transmission zero [6, 10].
These features thus turn out to be artefacts of the mean-field approximation, which misses the
rather simple scenario for the phase lapse behaviour of a two-level dot at small δ: for generic
level-lead couplings a phase lapse and transmission zero between two transmission peaks is
already present at U = 0; increasing the Coulomb interaction the peaks become well-separated
while the phase lapse and transmission zero remain in the valley between them.

In the model of a single wide and several narrow levels [3] a relation between phase lapses
and population inversions was discussed. Therefore, in phase lapse studies quite often also the
level occupancies nj, j = 1, 2, are investigated. We emphasize that the generic appearance of
a phase lapse and transmission zero even at U = 0 renders the two-level model unsuitable for
establishing a general relation between phase lapses and population inversions, as the latter only
appear at sufficiently large U. Furthermore, we show that discontinuities of the nj as a function of
Vg are an artefact of the mean-field solution (see [6, 10]). Within our approaches discontinuities
are only found for l–r symmetric level-lead couplings with a relative plus sign of the underlying
hopping matrix elements and degenerate levels, a case which was earlier identified as being
nongeneric [13, 14], because the transmission shows only a single peak.

This paper is organized as follows. In section 2, we introduce our model for the spin-polarized
and spin-degenerate two-level dot. We discuss the relation between the measured magnetic flux
φ dependence of the interferometer’s linear conductance and the magnitude and phase of the
dot’s transmission amplitude. The latter can be computed from the one-particle Green function
of the dot. We present a brief account of our techniques to obtain the latter, the numerical
renormalization group (NRG) [26] and functional renormalization group (fRG) methods. For an
introduction to the use of the fRG to quantum dots see [27, 28]. We have implemented the full
density matrix (FDM) NRG method of [29], which enables us to investigate dots with arbitrary
level-lead state overlap matrix elements tlj (with l = L, R) as well as to study finite temperatures.
In section 3–5 we present our results of the Vg dependence of |t| and θ. First we briefly discuss
the noninteracting two-level dot with generic level-lead couplings and point out that the phase
lapse scenario differs from the one for more than two levels. We then investigate interacting, spin-
polarized dots, study the relation between phase lapses and population inversions and compare
to the mean-field results for the phase lapses. The issue of continuous versus discontinuous Vg

dependence of the level occupancies n1 and n2 is commented on. Next we study the role of
finite temperatures. Finally, we consider spin-degenerate levels at small T which implies the
appearance of Kondo physics at odd average dot filling. Using NRG and fRG we show that the
spin does not alter the universal phase lapse scenario. Our findings are summarized in section 6.

2. The model and methods

In this section, we introduce our model for the two-level dot. We argue that it is the energy
dependent (effective) transmission amplitude t̃(ω) which one has to compute if one is interested
in comparing to the measurements of [17]–[19] of the magnitude of the transmission amplitude
and its phase. The amplitude t̃(ω) can be determined from the matrix elements of the dot’s
interacting one-particle Green function. We furthermore discuss aspects of the NRG and the fRG
specific to our problem.
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2.1. Two-level set-up and transmission amplitude

Our Hamiltonian consists of three parts

H = Hlead + Hdot + Hlead−dot. (1)

The two semi-infinite leads are modelled as noninteracting one-dimensional tight-binding chains
and for simplicity are assumed to be equal

Hlead = −τ
∑

l=L,R

∑
σ

∞∑
m=0

(
c

†
m,σ,lcm+1,σ,l + h.c.

)
. (2)

The hopping strength in the leads is τ. We use standard second quantized notation with l = L, R

indicating the left and right leads, where the quantum numbers m and σ label Wannier states and
spin, respectively. The dot is described by

Hdot =
∑

σ

∑
j=1,2

εjd
†
j,σdj,σ +

1

2
U

∑
σ,σ′

∑
j,j′

(
d

†
j,σdj,σ − 1

2

) (
d

†
j′,σ′dj′,σ′ − 1

2

)
, (3)

where the term with j = j′ and σ = σ ′ is excluded from the sum in the interacting part. We define
ε1/2 = ∓δ/2 − Vg. In experimental systems the inter- and intra-level Coulomb repulsion can be
expected to be comparable in size and to avoid a proliferation of parameters we assumed them
to be equal. This assumption is not essential; by relaxing it we have checked that our results are
robust against inter-level variations of the interaction strengths. Finally, the coupling between
dot and lead states is given by

Hlead-dot = −
∑

l=L,R

∑
σ

∑
j=1,2

(
tljc

†
0,σ,ldj,σ + h.c.

)
(4)

with real overlap matrix elements tlj.
For simplicity, part of our studies will be performed on a model of spinless electrons, for

which the spin index will be dropped. The resulting model may be regarded as a spin-polarized
version of the spinful model obtained if the latter is put in a very large magnetic field.

The experimental two-path interferometer has the following structure (see figure 1(a)
of [18]): an emitter and collector, are connected via two very narrow point contacts to a
large, grounded base region between them. The layout of the base region has three important
properties. (i) Electrons travelling from emitter to collector are guided by appropriately arranged
gates through a ring-like structure in the base region, containing an upper and lower arm, the
latter containing a quantum dot. (ii) The ring contains several additional wide exit channels
(apart from collector and emitter) towards grounded leads; their presence strongly reduces the
probability for an electron to traverse the upper or lower arm more than once along its journey
from emitter to collector. Thus, multiple ring traversal trajectories can be assumed to make a
negligible contribution to the measured conductance between collector and emitter. Moreover,
in the resulting multi-terminal geometry, the transmission phase through the quantum dot is not
fixed by Onsager relations (as it would be for a two-terminal device); instead, the phase evolves
smoothly with system parameters such as gate voltage. (iii) Since all parts of the base regions are
connected to ground, no voltage drops occur across the quantum dot, which thus is in equilibrium
with the Fermi seas of the base regions to which it is connected on its right and left. Instead,
voltage drops occur across the two point contacts between emitter and base region, and base
region and collector, but these contacts are so narrow, and the conductance across them so small,

New Journal of Physics 9 (2007) 123 (http://www.njp.org/)

http://www.njp.org/


6 DEUTSCHE PHYSIKALISCHE GESELLSCHAFT

that the electrons traversing them do not drive the base region out of equilibrium. Thus, in this
particular geometry, the emitter can be viewed as injecting electrons toward the base region (and
quantum dot) at an energy set by the voltage difference between the two. The inelastic scattering
length can be assumed to be longer than the total path length between emitter and collector,
so that the Aharonov–Bohm interference signal is due solely to electrons reaching the collector
with the same energy as that with which they were injected at the emitter. (Energy relaxation of
these electrons can be assumed to occur only deep in the collector.) Moreover, we shall only be
interested in the linear response regime, where the voltage drop across the emitter point contact
is smaller than all other relevant energy scales.

Under these circumstances, the linear response conductance between source and drain is
essentially given by the equilibrium transmission amplitude from emitter to collector, calculated
at injection energy ω across the emitter point contact, and thermally averaged over all injection
energies: GEC = − ∫ ∞

−∞ dωf ′(ω)|tEC(ω)|2, where f ′ is the derivative of the Fermi function. We
may write tEC(ω) = trefei2πφ/φ0 + tdot(ω), where φ0 is the flux quantum and tref = |tref |eiθref and
tdot = |tdot|eiθdot are the transmission amplitudes through the reference arm and the arm containing
the dot, respectively. Thus, the flux-dependent part of GEC takes the form [19, 20, 30]

GAB ∝ −
∫ ∞

−∞
dωf ′(ω)|tdot(ω)||tref |cos[2πφ/φ0 + θref + θdot(ω)]. (5)

The transmission tdot is the product of the transmission t̃ through the dot and the transmission
trest through the rest of the interferometer arm containing the dot. It is reasonable to assume
that trest as well as tref are only weakly energy and gate voltage dependent and thus the Vg-
dependence of the Aharonov–Bohm oscillations of the measured linear conductance of the
interferometer is dominated by the Vg dependence of the magnitude and phase of the transmission
amplitude through the dot. As usual [9], we compute the energy-averaged transmission phase θ

and magnitude |t| of the dot for a fixed spin direction as the phase and absolute value of

t(Vg) = −
∫ ∞

−∞
dωf ′(ω)t̃(ω), (6)

where t̃(ω) = TLR(ω) is the LR-matrix element of the equilibrium transmission matrix of the
dot, which gives the amplitude for an electron injected from the left towards the dot with energy
ω and a given spin, to emerge with the same energy and spin on its right. In the limit T → 0, −f ′

reduces to a δ-function and t(Vg) is equal to t̃(µ). We here take the chemical potential µ = 0. Note
that in contrast to the more common geometries where the voltage difference between emitter
and collector causes voltages drops to arise across the quantum dot, so that the Meir–Wingreen
formula [31] applies, so-called vertex contributions to the conductance are not needed in the
present geometry.

Using scattering theory t̃(ω) (for fixed spin direction) can be related to the spin-independent
matrix elements (in the j = 1, 2 indices of the Wannier states) of the dot’s one-particle retarded
Green function G,

t̃(ω) = 2

(√
	L

1 	R
1 G1,1(ω + i0) +

√
	L

2 	R
1 G1,2(ω + i0)

+s

√
	L

1 	R
2 G2,1(ω + i0) + s

√
	L

2 	R
2 G2,2(ω + i0)

)
, (7)
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with (after taking the wide band limit; see below)

	l
j = π|tlj|2ρlead(0) � 0, (8)

where ρlead(ω) denotes the local density of states at the end of each semi-infinite lead. Without
loss of generality we have assumed that tl1 � 0, tL2 � 0 and tR2 = s|tR2 | with s = ±. For later
purposes we define s = sign (tL1 tR1 tL2 tR2 ) and γ = {	L

1 , 	R
1 , 	L

2 , 	R
2 }/	. The spin-independent dot

occupancies nj (per spin direction), that we will also investigate, follow from the Green function
Gj,j by integrating over frequency (or can be computed directly when using NRG). Here we
will compute G in two ways, using both a truncated, that is approximate, fRG scheme, and a
numerically exact method, the NRG. For l–r symmetry of the level-lead couplings the Friedel
sum rule can be used and at temperature T = 0, t̃(0) can also be expressed in terms of the spin
independent occupancies [22]

t̃(0) = sin ([ne − no]π)ei(ne+no)/π, (9)

where ne = n1 + n2, no = 0 for s = + and ne = n1, no = n2 for s = −, respectively. A
transmission zero occurs for gate voltages at which ne = no mod 1. Assuming that ne − no is
continuous close to these gate voltages at the same Vg a π phase lapse occurs.

2.2. The fRG approach

The truncated fRG is an approximation scheme to obtain the self-energy � (and thus the one-
particle Green function) and higher order vertex functions for many-body problems [32]–[34].
As a first step in the application of this approach to quantum dots one integrates out the
noninteracting leads within the functional integral representation of our many-body problem
[35]. The leads provide a frequency dependent one-particle potential on the dot levels. On the
imaginary frequency axis it is given by

V lead
j,σ;j′,σ′(iω) =

∑
l

tljt
l
j′glead(iω)δσ,σ′, (10)

where glead(iω) denotes the spin-independent Green function of the isolated semi-infinite leads
taken at the last lattice site

glead(iω) = iω + µ

2 τ2


1 −

√
1 − 4 τ2

(iω + µ)2


 . (11)

As we are not interested in band effects we take the wide band limit. The potential then
reduces to

V lead
j,σ;j′,σ′(iω) = −i

∑
l

√
	l

j	
l
j′ sign(ω)δσ,σ′ . (12)

After this step, instead of dealing with an infinite system we only have to consider the dot of two
interacting levels.

In the computation of the interacting one-particle Green function projected on to the dot
system the sum of the dot Hamiltonian with U = 0 and V lead

j,σ;j′,σ′(iω) can be interpreted as a
frequency dependent ‘single-particle Hamiltonian’and in the following will be denoted byh0(iω).
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For the spin-polarized case it is a 2 × 2 matrix in the quantum number j = 1, 2. Including spin,
because of the additional quantum number σ = ↑, ↓, h0(iω) is a 4 × 4 matrix which is block-
diagonal in σ (spin conservation). As we are here not interested in the role of a magnetic field
lifting the spin-degeneracy of each level the σ =↑ and σ =↓ blocks are equivalent. The resolvent
G0(z) = [z − h0(z)]−1 obtained from h0(z) is equivalent to the noninteracting propagator of our
two-level many-body problem projected on the dot levels. In the generating functional of the
one-particle irreducible vertex functions we replace G0(iω) by

G
0 (iω) = �(|ω| − )G0(iω) = �(|ω| − )[iω − h0(iω)]−1 (13)

with  being an infrared cut-off running from ∞ down to 0. Taking the derivative with respect
to  one can derive an exact, infinite hierarchy of coupled differential equations for vertex
functions, such as the self-energy and the one-particle irreducible two-particle interaction. In
particular, the flow of the self-energy � (one-particle vertex) is determined by � and the
two-particle vertex W, while the flow of W is determined by �, W, and the flowing three-
particle vertex. The latter could be computed from a flow equation involving the four-particle
vertex, and so on. At the end of the fRG flow �=0 is the self-energy � of the original, cut-off-
free problem we are interested in [32, 33] from which the Green function G can be computed
using the Dyson equation. A detailed derivation of the fRG flow equations for a general quantum
many-body problem that only requires a basic knowledge of the functional integral approach
to many-particle physics [35] and the application of the method for a simple toy problem is
presented in [34]. For an overview of the application to quantum dots see [27, 28].

We here truncate the infinite hierarchy of flow equations by only keeping the self-energy and
the frequency-independent part of the two-particle vertex. Higher order terms can be neglected if
the bare two-particle interaction is not too large. By comparison to NRG data this approximation
scheme was earlier shown to provide excellent results for a variety of dot systems [13, 22, 27].
For further comparison see figure 7 below. The present scheme leads to a frequency-independent
self-energy (see below). As finite frequency effects (inelastic processes) become important at
temperatures T > 0, but these are not accurately treated by the level of approximation used here,
in the present paper we shall show fRG results only for T = 0. It would be possible to extend
our results to T > 0 by using a fRG truncation scheme in which the frequency dependence of the
two-particle vertex is kept. Such a scheme was used in [33] to study the one-particle properties
of the single-impurity Anderson model. The truncation leads to the coupled differential flow
equations

∂

∂
�

k′,k = − 1

2π

∑
ω=±

∑
l,l′

eiω0+G
l,l′(iω)W

k′,l′;k,l (14)

and

∂

∂
W

k′,l′;k,l = 1

2π

∑
ω=±

∑
m,m′

∑
n,n′

{
1
2G

m,m′(iω)G
n,n′(−iω)W

k′,l′;m,nW

m′,n′;k,l

+G
m,m′(iω)G

n,n′(iω)
[

− W
k′,n′;k,lW


m′,l′;n,l + W

l′,n′;k,mW
m′,k′;n,l

]}
, (15)

where k, l, etc. are multi-indices representing the quantum numbers j, σ and

G(iω) = [G−1
0 (iω) − �]−1. (16)
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In the model with spin-degenerate levels each index k, l etc. can take four different values j = 1, 2
and σ =↑, ↓ which gives 16 equations for � and 256 for the two-particle vertex. For a spin-
polarized two-level dot the multi-indices take two values and one obtains 4 equations for �

and 16 for the two-particle vertex. The number of independent equations can be significantly
reduced (see below) taking into account the antisymmetry of the two-particle vertex and the
spin symmetry (for spin-degenerate levels) both being preserved by equations (14) and (15). The
initial conditions at  = 0 → ∞ are given by �

0
1,1′ = 0 while W

0
1′,2′;1,2 is given by the bare

antisymmetrized two-body interaction. In the spin-polarized case the only nonzero components
of the two-particle vertex at  = 0 → ∞ are

W
0
1,2;1,2 = W

0
2,1;2,1 = U and W

0
1,2;2,1 = W

0
2,1;1,2 = −U. (17)

In the model including spin the initial conditions take the form

W
0
1↑,1↓;1↑,1↓ = U, W

0
1↑,2↑;1↑,2↑ = U, W

0
1↑,2↓;1↑,2↓ = U,

W
0
2↑,2↓;2↑,2↓ = U, W

0
1↓,2↓;1↓,2↓ = U, W

0
1↓,2↑;1↓,2↑ = U. (18)

All other components which do not arise out of these by permutations (W0
1,2;1′,2′ = W

0
1′,2′;1,2 and

W
0
1,2;1′,2′ = −W

0
1,2;2′,1′) are zero. The self-energy matrix and thus the one-particle Green function

is completely independent of the spin direction and in the following we suppress the spin indices.
As already mentioned the present approximation leads to a frequency-independent self-

energy. This allows for a simple single-particle interpretation of its matrix elements. The sum
of the �

j,j and the bare level position correspond to the flowing effective level positions,
ε

j = εj + �
j,j, while t = −�

1,2 = −�
2,1 is a hopping between the levels 1 and 2 generated in

the fRG flow. The fRG formalism then reduces to a set of coupled differential flow equations for
ε

j , t and a few (one in the spin-polarized case and seven for spin-degenerate levels) independent
components of the two-particle vertex. These flow equations can easily be integrated numerically
using standard routines. It is important to note that although we start out with intra- and inter-
level Coulomb interactions of equal strengths they generically become different during the fRG
flow (because of the different 	l

j). Furthermore, additional interaction terms which are initially
zero will be generated in the flow. The set of equations significantly simplifies if the flow of
the vertex is neglected while the results remain qualitatively the same. Within this additional
approximation and for a spin-polarized dot the flow equations for ε

j and t are explicitly given
in [13]. In certain limiting cases it is even possible to analytically solve the differential equations
[13, 27]. However, in the present work, the flow of the vertex is retained which clearly improves
the quality of the approximation [27].

At the end of the fRG flow, the full Green function takes the form [G(iω)]−1
j,j′ =

iωδj,j′ − hj,j′(iω) with an effective, noninteracting (but Vg-, U- and ω-dependent) ‘Hamiltonian’

hj,j′(iω) = h0;j,j′(iω) − �j,j′ . (19)

In a last step we have to perform the analytic continuation to the real frequency axis iω → ω + i0.
This is straightforward, as the only frequency dependence of h(iω) is the trivial one of the lead
contribution equation (12). Then t̃(ω) can be computed using equation (7).

2.3. The NRG approach

The NRG was invented by K G Wilson in 1974 as a nonperturbative renormalization scheme
for the Kondo model [36]. It was later extended to the fermionic [26, 37] Anderson model
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which describes a localized electronic state coupled to a fermionic bath. The NRG allows
thermodynamic and dynamic properties of such strongly correlated systems to be calculated
at zero and finite temperature [29], [38]–[42].

The key idea of NRG is to discretize the conduction band of the bath logarithmically,
leading to a tight-binding chain for which the hopping matrix elements between the successive
sites fall off exponentially with 

−n/2
NRG , where NRG > 1 is the discretization parameter, typically

1 < NRG < 3, and n is the site index. This energy scale separation ensures that the problem
can be solved iteratively by adding one site at a time and diagonalizing the enlarged system at
each step, thereby resolving successively smaller and smaller energy scales. Thus, by choosing
the length N of the chain so large that the corresponding energy scale ∼ 

−N/2
NRG is smaller than

all other energies in the problem, all relevant energy scales can be resolved and treated properly.
Since the dimension of the Hilbert space of the chain increases exponentially with the length
of the chain, a truncation scheme has to be adopted, according to which only the lowest Nkept

eigenstates of the chain are retained at each iteration. Recently, it was shown that by also keeping
track of discarded states a complete, but approximate, basis of states can be constructed [43].
This can be used to calculate spectral functions which rigorously satisfy relevant sum rules [29].

In order to obtain the transmission through the dot t̃(ω) equation (7) we follow [29, 39] to
compute the imaginary part of the local Green functions at temperature T , using the Lehmann
representation

Im Gj,j′(ω) = − π
e−ωn/T

Z

∑
n,m

〈
n|dj,σ|m

〉 〈
m|d†

j′,σ|n
〉
δ(ω − [ωm − ωn])

− π
e−ωn/T

Z

∑
n,m

〈
n|d†

j′,σ|m
〉 〈

m|dj,σ|n
〉
δ(ω + [ωm − ωn]), (20)

with Z = ∑
n e−ωn/T , the many-body eigenstates |n〉 and eigenenergies ωn. Since these are causal

functions, the real part can be accessed by performing a Kramers–Kronig transformation [44].
Using this method we obtain numerically exact results for the local Green function.

In the next three sections we present our results. In section 3 for the U = 0 case. In section 4
we present the generic phase lapse scenario for interacting spin-polarized dots, compare to the
mean-field results and investigate the role of finite temperatures. Finally, in section 5 we study
the spinful two-level dot.

3. Results: noninteracting dots

The large number of parameters makes it essential to analyse the transmission for the
noninteracting case before considering the effect of two-particle interactions. We focus on T = 0.
A closed expression for |t(Vg)| and θ(Vg) (for a fixed spin direction) at U = 0 can be obtained
from equations (6) and (7) by replacing G(0 + i0) by G0(0 + i0),

|t(Vg)| =
2

[
	L

1 	R
1 ε2

2 + 	L
2 	R

2 ε2
1 + 2s

√
	L

1 	R
1 	L

2 	R
2 ε1ε2

]1/2

[(
	L

1 	R
2 + 	L

2 	R
1 − 2s

√
	L

1 	R
1 	L

2 	R
2 − ε1ε2

)2
+ (ε1	2 + ε2	1)2

]1/2 , (21)
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θ(Vg) = arctan


 ε1	2 + ε2	1

ε1ε2 −
(√

	L
1 	R

2 − s
√

	R
1 	L

2

)2


 mod π, (22)

with 	j = ∑
l 	

l
j. For a fixed set of 	l

j the δ dependence of |t(Vg)| and θ(Vg) is shown in the
first columns of figures 1 and 2 for U/	 = 0.2. The results are qualitatively the same as those
obtained for U = 0. For generic level-lead couplings 	l

j the gate voltage dependence of equation
(21) in the limit of small and large δ/	 is dominated by two peaks (of height � 1) and a
transmission zero. Associated with the transmission zero is a π phase lapse at the same gate
voltage. The transmission zero (and phase lapse) follows from perfect destructive interference at
a particular Vg. For a strong asymmetry in the couplings of the two levels to the leads, 	1 
 	2

or vice versa, this can be understood as follows: in this limit transport is simultaneous through
a broad and a narrow level which for small δ are almost degenerate. This is the typical situation
for the appearance of a Fano anti-resonance [23]. In the present set-up the Fano parameter q

is real (due to time-reversal symmetry); this guarantees that, upon sweeping the gate voltage,
the transmission amplitude must cross zero at some point or other, at which a phase lapse thus
occurs. (In [22], we show that a similar mechanism of phase lapses due to Fano anti-resonances
occurs in dots with more than two levels.) The Fano anti-resonance with vanishing transmission
is robust if one goes away from this limit towards more symmetric level-lead couplings. Across
each of the transmission resonances θ increases roughly by π as expected for a Breit–Wigner
resonance. Further details of |t(Vg)| and θ(Vg) depend on s. For s = + the transmission zero (and
phase lapse) is located between the two conductance peaks for all δ. For δ → 0 the resonance
peak positions depend on the asymmetry of the 	l

j and the separation of the peaks is small if
the 	l

j are close to l–r symmetry, that is close to 	L
j = 	R

j . For l–r symmetric dots and δ = 0 the
transmission zero (and phase lapse) disappears (not shown in the figures). This is an example of
a submanifold in parameter space with nongeneric behaviour. A complete account of such cases
(which also remain nongeneric for U > 0) is given in [13, 14]. As they require fine tuning these
parameter sets are presumably irrelevant in connection with the experiments and we will here
only briefly mention results obtained in such cases.

For s = − and fixed 	l
j the position of the transmission zeros and phase lapses with respect

to the CB peaks is different for small or large δ/	 (see figure 2). At small δ/	 it is located
between the two conductance peaks, whereas for large δ/	 it lies on one of the outer sides of
these peaks [9]. In the crossover regime between these limiting cases the height of one of the
peaks decreases, while the other becomes broader and splits up into two resonances separated
by a minimum with nonvanishing conductance (see figures 2(g) and (j)). The crossover scale
δc depends on the choice of 	l

j. For large δ/	, |t| has three local maxima, although the height
of one of the maxima is significantly smaller than the height of the other two (not shown in
figure 2). For fixed, asymmetric 	l

j and δ → 0 the separation of the two conductance peaks for
s = − is significantly larger than for s = + (compare figures 1(a) and 2(a)).

It is important to note that for small δ/	 essential features of the universal phase lapse
regime established in the experiments are already found at U = 0: regardless of the sign s for
generic 	l

j (that is with the exception of a few cases with increased symmetry) two transmission
resonances are separated by a transmission zero and π phase lapse. At U = 0 the peak separation
is too small and the shape of the Vg dependence of the transmission and phase close to the
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Figure 1. Systematic account of the energy scales U/	 and δ/	 that govern the
gate voltage Vg dependence of the magnitude of the transmission |t| (black), the
transmission phase θ (red) and the level occupancies (green and blue) of a spin-
polarized two-level dot at T = 0. The parameters are γ = {0.1, 0.3, 0.4, 0.2} and
s = +. For better visibility n1/2 were shifted by 1. The depicted behaviour is the
generic one and in particular qualitatively independent of the actual choice of
γ (up to certain cases of increased symmetry; for examples see the text). The
behaviour at U/	 = 0.2 is qualitatively the same as the one at U = 0. The results
were obtained using the truncated fRG.
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Figure 2. The same as in figure 1, but for s = −.

peaks is qualitatively different from those observed experimentally (namely Lorentzian-like for
the magnitude of the transmission, S-shaped for the phase). As we show next the latter problems
do not arise for sufficiently large interactionU, which in particular leads to an increased separation
U + δ of the transmission peaks.
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4. Results: spin-polarized dots

4.1. The generic phase lapse scenario

In [22] it was shown that fRG and NRG results for |t(Vg)| and θ(Vg) agree quantitatively up
to fairly large U. For a generic set of couplings γ we present fRG data for θ(Vg) and |t(Vg)|
together with the occupancies of the levels nj for different U and δ in figures 1 (s = +) and
2 (s = −). Increasing U/	 the separation of the transmission peaks in the limit of small and
large δ/	 increases and is eventually given by U + δ. Even though this charging effect appears to
be straightforward it is important to note that in particular the groundstate at small δ/	 is highly
correlated. This becomes explicit from the mapping of the present problem on a generalized
single impurity Anderson and Kondo model as discussed in [14]–[16]. An indication of strong
correlation effects are the correlation-induced resonances of the transmission found in [13], which
we briefly mention below. With increasing U, even at small δ/	 the gate voltage dependence of
θ(Vg) across the transmission resonances becomes S-shaped and the resonances more Lorentzian-
like (see third columns of figures 1 and 2). Obviously, for s = + the transmission zero and phase
lapse remain between the two transmission peaks for all δ and U (see figure 1). For s = − this
only holds for sufficiently small level spacings as, similar to the U = 0 case, with increasing
δ/	 a crossover sets into a regime in which the transmission zero and phase lapse are no longer
between the peaks.Analogously to theU = 0 case, the crossover scale δc depends on the particular
choice of 	l

j. As can be seen from the second row of figure 2 (the CB peaks at large U have still
almost equal height), with increasing U/	, δc is pushed towards larger values. The Coulomb
interaction thus stabilizes the parameter regime of universal phase lapses. This shows that the
effect of the Coulomb interaction leading to universal π phase lapses between separated CB
peaks in a two-level dot is rather straightforward: for small δ/	 the phase lapse and transmission
zero are already present at U = 0, and the effect of finite U is simply that the CB peaks
become well-separated because of charging effects. They also lead to a Lorentzian-like lineshape
of the peaks and an S-like variation of θ across them. The present scenario has to be contrasted
to the one obtained for N > 2 levels discussed in [22]. The generic appearance of N − 1
transmission zeros and phase lapses separating the transmission peaks at small δ/	 and U = 0
is specific to the case with N = 2 levels. For N > 2 the number of transmission zeros and phase
lapses at U = 0 strongly depends on the parameters and the mechanism leading to universal
π phase lapses at sufficiently large U (at small δ/	) is much more involved [22]. This shows
that although important insights can be gained from studying two-levels, to achieve a complete
understanding of the phase lapse scenario it is essential to study dots with Coulomb interaction
and more than two levels [22].

The lineshape of |t| shows characteristic differences in the limits of small and large δ/	. In
the universal regime at small δ/	 and for sufficiently large U/	 the two CB peaks have equal
width of order 	 (not 	j) and equal height which is consistent with the expectation that at each
peak the transport occurs through both bare levels simultaneously.A similar behaviour is observed
in the experiments. In the mesoscopic regime (δ/	 � 1) the width of the jth peak is given by 	j

and the relative height hj governed by 	L
j /	R

j , independent of the value of U. This effectively
noninteracting lineshape can be understood from the gate voltage dependence of the effective
level positions ε=0

j at the end of the fRG flow. When one level is charged the effective level
position of the other level is pushed downwards by U. Besides this, the gate voltage dependence
of the ε=0

j remains linear, leading to two transmission peaks at gate voltages ε=0
j (Vg) = 0 with
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separation U + δ, but with the same width and height as for U = 0. The hopping between the
two effective levels generated in the fRG flow is small and can be neglected.

Apart from the CB peaks, for sufficiently large U/	 the transmission shows additional
features at small Vg/	 (see figures 1(b), (c), (e) and 2(c)). These are the correlation-induced
resonances mentioned in the Introduction section, which have been found to be most pronounced
at δ = 0 and in this case occur for interactions larger than a critical Uc which depends on the
	l

j and s [13, 14]. Their appearance indicates that the groundstate at small δ/	 is strongly
correlated (as mentioned in [13] the correlation-induced resonances are not captured by a mean-
field analysis; see below). Associated with the correlation-induced resonances is a sharp increase
of θ (see figures 1(b) and (e)). At large U/	 the correlation-induced resonances are exponentially
(in U/	) sharp features that vanish quickly with increasing T (see below), which might be one of
the reasons why up to now they have not been observed in experiments. The correlation-induced
resonances are not directly linked to the universal phase lapse scenario.

For increasing U/	 at fixed δ/	 and decreasing δ/	 at fixed U/	 we observe an increased
tendency towards population inversion of the nj. We define that a population inversion occurs
if (i) n1(V

PI
g ) = n2(V

PI
g ) at a certain V PI

g and (ii) one nj has positive and one negative slope at
V PI

g so that the filling of one level causes a tendency for the other to empty. For large U/	

and small δ/	 it is mainly the more strongly coupled level (in figures 1 and 2, this is the level
2 shown in blue) whose population increases across both CB peaks while it is depopulated in
between. This behaviour is reminiscent of the one discussed in the model with a broad and several
narrow levels [3], where a relation between population inversion and phase lapse behaviour was
proposed. Remarkably, for sufficiently large U/	, we find population inversion even for small
asymmetries 	2/	1 (which is only 1.5 in the example of figures 1 and 2). We emphasize that
despite this resemblance to the observation of [3], the N = 2 model is not appropriate to establish
a general relation between the appearance of population inversions and π phase lapses at small
δ/	 [6, 10]. While the latter are already present at U = 0, the former only develop with increasing
U (compare figures 1(a), (d) or 2(a), (d) to figures 1(c), (f) or 2(c), (f)). Note that the gate voltage
V PI

g at which the population inversion occurs is generically not identical to the position of the
phase lapse and transmission zero (see figures 1(b), (c), (f) and 2(c), (f)) [14]. However, for l–r
symmetric 	l

j equation (9) ensures that if a population inversion occurs its position is identical
to the one of the phase lapse and transmission zero.

As can be seen in figures 1(c), (f) and 2(c), (f) for small δ/	 and large U/	 the nj

show a rather strong gate voltage dependence between the CB peaks. Nevertheless the total
dot occupancy n1 + n2 is only weakly Vg dependent and close to 1 within the entire CB valley.
This is reminiscent of the plateau-like occupancy in the local moment regime of the single
impurity Anderson model showing the Kondo effect. As discussed in [14]–[16] a relation to this
model can indeed be established.

We note in passing that with the exception of the nongeneric case of l–r symmetric 	l
j, s = +

and δ = 0, the nj are continuous functions of Vg.

4.2. Comparison with mean-field theory

In [10, 11] Golosov and Gefen (GG) analyse the phase lapse scenario of the spin-polarized
interacting two-level dot within the mean-field approximation. However, they anticipated
themselves that correlations not captured in the mean-field approach could be important.
Examples of this had been pointed out already in [5, 13]. Thus, GG emphasized that the effects of
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such correlations on their results need to be studied in subsequent work. The present subsection
is devoted to this task.

GG consider the subspace of level-lead couplings defined by 	L
1 − 	R

1 = 	R
2 − 	L

2 .
Performing a unitary transformation on the dot states the part of the Hamiltonian equation (1)
containing dot operators can be transformed to (see [10, 11])

Hdot + Hlead−dot =
∑
j=1,2

ε̂jd̂
†
j,σd̂j,σ + Ud̂

†
1d̂1d̂

†
2d̂2 − t̂(d̂

†
1d2 + h.c.)

−
[
c0,L

(
t̂1d̂

†
1 + t̂2d̂

†
2

)
+ c0,R

(
t̂1d̂

†
1 − t̂2d̂

†
2

)
+ h.c.

]
, (23)

with the transformed operators and parameters indicated by a hat. The change of basis leads to
a direct hopping t̂ between the transformed levels. We here focus on the relative sign ŝ = −.
GG then introduce the two new dimensionless parameters κ and α as t̂ = −κδ̂/(2

√
1 − κ2)

and α = (|t̂1| − |t̂2|)/
√

t̂2
1 + t̂2

2. Varying κ and α GG investigate the phase lapse behaviour for

fixed level spacing (in the new basis) ε̂2 − ε̂1 = δ̂ = 0.256	̂ and interaction U/	̂ = 6.4. As the
parameters in the new basis are rather complicated combinations of the original ones, the variation
of α and κ corresponds to the variation of the 	l

j (within the above specified subspace), δ and
even s. Our simple picture that increasing the level spacing δ of the untransformed model leads
from the universal to the mesoscopic regime cannot easily made explicit using the parameters
of GG. To make the comparison of our results to the mean-field study definite we nevertheless
follow the steps of GG.

Varying α, κ ∈ [0, 1[ at ŝ = − we move around in the right part of what is called the ‘phase
diagram’ by GG (figure 4 of [11]). In figure 3, we show the behaviour of |t| and θ varying α

at fixed κ (figures 3(a)–(d)) and κ at fixed α (figures 3(e)–(h)), respectively. In the first case,
upon increasing α at constant κ = 0.5, we move from GGs ‘phase 2’, (red in figure 4 of [11]),
with the transmission zero and phase lapse outside the two CB peaks, into ‘phase 1’ (blue in
figure 4 of [11]), with the transmission zero and phase lapse between the peaks. The mean-field
approximation correctly captures the presence of these two regimes. We find a smooth crossover
between them (which is why we prefer the notion of different ‘regimes’ rather than ‘phases’):
the Vg value at which the transmission zero and phase lapse occur smoothly crosses from lying
outside the right CB peak to lying between the two CB peaks. This is similar to the smooth
crossover we observe in the s = − case of the untransformed model when moving from the
mesoscopic to the universal regime (see columns of figure 2).

For fixed α = 0.6 and increasing κ we move from ‘phase 3’ (green in figure 4 of [11]) into
‘phase 1’. In contrast to the mean-field approximation where an abrupt transition from ‘phase 3’
to ‘phase 1’ occurs, figures 3(e)–(h) show a rather smooth evolution. The mean-field ‘phase 3’
is characterized by discontinuous population switching and a phase lapse between the CB peaks
which, surprisingly, is smaller than π [6, 10]. Furthermore, in this parameter regime the mean-
field results show no transmission zero, as discussed in [6]. However, from figures 3(e)–(h) it is
apparent that ‘phase 3’, is an artefact of the mean-field approximation: upon taking correlations
into account via fRG, the π phase lapse and the transmission zero are found to remain in the
CB valley. The evolution with increasing κ is similar to the s = + case of the untransformed
model when the level spacing is increased at fixed 	l

j (see the second and third columns of figure
1). ‘Phase 3’ then corresponds to the parameter regime with small level spacing and a sizeable
U/	 in which correlations are of particular importance leading e.g. to the correlation-induced
resonances (see figures 3(e)–(h)). That the mean-field approximation fails to properly describe
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Figure 3. Two traces through the mean-field ‘phase diagram’ of GG. Panels
(a)–(d) are for constant κ and different α moving from GGs ‘phase’ 2 into
‘phase’ 1. Panels (e)–(h) are for constant α and different κ moving from GGs
‘phase 3’ into ‘phase 1’. The inset in panel (e) shows a zoom in of the gate
voltage region around the phase lapse. For a detailed comparison to the
mean-field results see the text. The results were obtained at T = 0 using
the truncated fRG.
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Figure 4. Temperature dependence of |t(Vg)| and θ(Vg) obtained by NRG for
γ = {0.27, 0.33, 0.16, 0.24}, U/	 = 10 for s = ± and in the universal (δ/	 =
0.02) and the mesoscopic (δ/	 = 4) regime. We used the NRG parameters
NRG = 2.3 and Nkept ∼ 512.

this strongly correlated regime is not surprising and has been recognized earlier [13]. In [14]–[16]
a connection between the small δ regime of the present model and the local moment (Kondo)
regime of the single-impurity Anderson model was established. Thus, the artefacts of the mean-
field approximation for the spinless two-level dot are reincarnations of the well-known artefacts
it produces when applied to the Anderson model in the local moment regime.

Upon taking correlations into account, the discontinuities of the n1/2 in ‘phase 3’are washed
out. The only choice of parameters for which we find discontinuous behaviour is the one with
l–r symmetric 	l

j, s = + and δ = 0, a case which was already identified as being nongeneric
[13]. Any arbitrarily small deviation from these conditions leads to a continuous gate voltage
dependence of n1/2. For parameters close to the nongeneric point the change in nj at first sight
appears to be rather sharp and an extremely high resolution in Vg is required to identify the
behaviour as continuous.

The fact that the mean-field treatment at U > 0 and small level spacings incorrectly causes
the transmission zero to disappear and the corresponding phase lapse to become smaller than π

is its most consequential problem. By generating such features, the mean-field treatment masks
the very simple scenario that emerges upon properly including fluctuations: for increasing U,
the π phase lapse and transmission zero found for small δ/	 at U = 0 remain in the CB valley,
while the transmission peaks become well-separated, Lorentzian-like and the phase acquires an
S-shape across the resonances.
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4.3. Finite temperatures

We next investigate how the phase and magnitude of the transmission are affected by finite
temperatures. To this end, we use the new FDM-NRG algorithm recently proposed in [29]. In
figure 4 we show NRG data for |t(Vg)| and θ(Vg) at different T . We consider generic level-lead
couplings γ = {0.27, 0.33, 0.16, 0.24}, U/	 = 10, s = ± and δ/	 = 0.02 (universal regime)
as well as δ/	 = 4 (mesoscopic regime). As expected, with increasing temperature the sharp
π phase lapses are gradually smeared out, the transmission zero vanishes and the change of θ

at the phase lapse becomes smaller than π. Furthermore, the CB peaks decrease and broaden.
For δ/	 = 4 and s = − (figure 4(d)) the phase lapse lies outside the CB peaks and outside the
window of gate voltages shown.

In the mesoscopic regime (figures 4(b) and (d)) the explicit temperature dependence of
the Green function entering equation (6) via equation (7) is rather weak and the temperature
dependence of the CB peaks and the phase lapse can be understood from the behaviour in the
noninteracting model, but with level spacing U + δ. For small T the height hj(T) of the jth CB
peak scales as 1 − hj(T)/hj(0) ∼ T 2/	2

j and the width w of the phase lapse as w ∼ T 2/(δ + U)2

[9]. The relevant scale for sizeable temperature effects in the peak height is thus 	j while it is
U + δ in the smearing of the phase lapses. Since we have chosen 	j 
 δ + U a reduction of hj

is visible for temperatures at which the phase lapse is still fairly sharp (see figure 4(b)).
Due to the importance of correlation effects at small δ/	, the T dependence of |t(Vg)|

and θ(Vg) in the universal regime is different from the noninteracting case. Here the explicit
temperature dependence of G is much stronger and cannot be neglected. The resulting T

dependence of |t(Vg)| and θ(Vg) is shown in figures 4(a) and (c).A comparison to figure 4(b) shows
that in the universal regime the smearing of the phase lapse sets in at a lower energy scale than in
the mesoscopic regime. This scale depends on the relative sign s of the level-lead hopping matrix
elements (compare figures 4 (a) and (c)). Furthermore, in contrast to the mesoscopic regime the
scales on which the CB peaks and the phase lapse are affected by temperature are comparable.
A more detailed investigation of the temperature dependence in the universal regime, which also
discusses the fate of the correlation-induced resonances, is beyond the scope of the present work
and is left as subject for future studies.

5. Results: spin-degenerate dots

We finally investigate the effect of the spin degree of freedom on the discussed phase lapse
scenario, at T = 0. In figures 5 (s = +, U/	 = 3) and 6 (s = −, U/	 = 4) we show fRG data
for the evolution of |t(Vg)|, θ(Vg) and nj(Vg) (for a fixed spin direction) with increasing δ for
a generic γ = {0.1, 0.2, 0.5, 0.2}. The overall dependence of θ(Vg) on δ is similar to the one
observed in the spinless case (compare figures 1 and 2). In particular, the behaviour at small δ/	

appears to be almost unaffected by the presence of the spin degree of freedom (figures 5(a), (b)
and 6(a), (b)). For large δ/	 (figures 5(d) and 6(d)) the transmission resonances are located at
odd average total filling of the two-level dot indicated by shoulders in the nj. At these fillings
and for sufficiently large U/	 the Kondo effect is active and the resonances cannot be regarded
as Lorentzian-like CB peaks. Instead they show a plateau-like shape known from the spinful
single-level dot (see [30] and references therein). Across the Kondo plateaux of |t| the S-shaped
increase of the phase is interrupted by a shoulder at θ ≈ π/2 as expected for the Kondo effect
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Figure 5. Gate voltage Vg dependence of |t| (black), θ (red) and the level
occupancies per spin direction (green and blue) of a spinful two-level dot at
T = 0 for different δ obtained by fRG. The parameters are U/	 = 3, γ =
{0.1, 0.2, 0.5, 0.2} and s = +. In (a), no data are shown around Vg = 0 for reasons
explained in the text.

[30]. It would be very interesting to study how each of the Kondo plateaus of |t| with increasing
temperature crosses over to two CB peaks and how the phase behaves in the generated CB valley.
This question is left for future investigations.

The behaviour of the phase in the presence of the Kondo effect was experimentally
investigated at temperatures comparable to the Kondo temperature [24], and much below the
Kondo temperature [25]. As we study the zero temperature case it is proper to compare our
calculations to the measurements at low temperatures. Indeed figure 6(c) for intermediate δ/	

qualitatively reproduces the experimental results at low temperature as shown in figure 3 (c) of
[25]. In particular the increase of the phase by more then π and the absence of clearly developed
Kondo plateaus are reproduced.

In figure 5(a) we left out the fRG data around Vg = 0 as for these gate voltages some of
the components of the flowing two-particle vertex become large. This indicates the breakdown
of our present truncation scheme [27, 28] and the results for |t|, θ and nj become unreliable.
For an explicit comparison to NRG data of |t| see figure 7(a). We note in passing that for s = +
correlation-induced resonances occur also in the model with spin (figure 5(a)]) [27].

In figure 7 we compare fRG and NRG results for l–r symmetric level-lead couplings. The
computational resources required to obtain NRG data away from l–r symmetry become large
and such data are not required for the aim of the present paper. We can then use equation (9)
and must only compute the occupancies nj, which is numerically less demanding. For δ > 0
(as exclusively shown) it is only the absence of the correlation-induced resonances for s = +
(compare figures 5(a) and 7(a)) which is different from the results of the generic γ shown in
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Figure 6. The same as in figure 5, but for U/	 = 4 and s = −.

figures 5 and 6. With the exception of the Vg ≈ 0 regime in the case of small δ and s = + the
fRG and NRG data compare quite well. In this case we only show the fRG data for |t| as the
results for the phase and occupancies become rather erratic. The reason for the breakdown of the
currently used truncated fRG is explained in [27, 28] and is related to the fact that at small δ and
small Vg the correlations in effect become extremely large.

6. Summary

In the present paper, we studied the appearance of phase lapses in an interacting two-level
quantum dot considering the entire parameter space using NRG and a truncated fRG scheme.

As a starting point we briefly discussed the noninteracting case at temperature T = 0 and
pointed out that for generic level-lead couplings, that is up to cases with increased symmetry,
essential features of the universal phase lapse scenario are already established at U = 0. For
single-particle level spacings δ small compared to the level broadenings 	j the transmission is
characterized by two transmission peaks of equal width with a transmission zero and an associated
π phase lapse between them (universal regime). For a large asymmetry of the level-lead couplings,
	1 
 	2 or vice versa this can be understood as resulting from a Fano anti-resonance. The Fano
effect is robust for more symmetric couplings as well as for U > 0. For large δ/	 at U = 0
the appearance or not of a transmission zero and phase lapse between the two transmission
peaks depends on the relative sign s of the level-lead couplings (mesoscopic regime). Within
a spinless model we have shown that the separation of the two transmission peaks increases
linearly with the interaction U while the π phase lapse and transmission zero remain in the valley
between them. Furthermore, with increasing U the increase of the phase across the peaks takes
an S-shape and the peaks become Lorentzian-like, thus assuming shapes resembling those
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Figure 7. Comparison of fRG (solid) and NRG (dashed) data for |t(Vg)|, θ(Vg)

and nj(Vg) (per spin direction) in the universal (small δ/	) and mesoscopic regime
(large δ/	) of a spinful two-level dot at T = 0. The parameters are U/	 = 3 and
γ = {0.15, 0.15, 0.35, 0.35}. In (a) the fRG data for θ(Vg) and nj(Vg) around
Vg = 0 are not shown. Already the unsatisfactory comparison between fRG and
NRG for |t| indicate that the fRG becomes unreliable in this regime. For more
details on this, see the text. For the NRG parameters we used NRG = 2.5,
Nkept = 1024 for s = + and Nkept = 2048 for s = −.

observed experimentally [17]–[19]. For s = − and increasing δ, a crossover occurs to a regime in
which the π phase lapse and transmission zero lies outside the two CB peaks. The crossover scale
δc increases with increasing interaction and thus the Coulomb repulsion stabilizes the universal
phase lapse behaviour. We have investigated the relation between phase lapses and population
inversions of the level occupancies nj.

Experimentally the universal phase lapse behaviour was found for every many-electron
dot measured [17]–[19]. In contrast, for dots with only a few electrons the phase behaves
mesoscopically, that is it shows a −π jump in certain transmission valleys while it increases
continuously in others, depending on the dot measured [19]. One generic difference between
few- and many-electron dots is the noninteracting single-particle level spacing of the topmost
filled levels. It is expected to decrease as the number of electrons increases. Consistent with this
we find a crossover from mesoscopic to universal phase lapse behaviour when δ was decreased
in our model.

We have shown that a mean-field treatment of the present problem correctly reproduces
certain features of the behaviour discussed above, but is not able to produce the universal phase
lapse scenario at small δ/	 due to artefacts of the approximation such as a phase lapse by less
than π [10, 11] and a vanishing of the transmission zero [6]. Furthermore, the discontinuous gate
voltage dependence of the nj found in the mean-field approximation turned out to be an artefact.
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Next, we studied how the phase lapse behaviour is affected by temperatures T > 0. The
universal phase lapse (at small δ/	) is smeared out but remains visible for not too large T .
In the mesoscopic regime with δ/	 � 1 the smearing of the phase lapse and the decrease of
the CB peaks can be understood in detail in analogy to the noninteracting case. For δ/	 
 1
correlations are more important and a detailed understanding of the temperature dependence of
the transmission t(Vg) requires further studies.

The phase lapse behaviour in both the universal and mesoscopic regimes is also stable if
the spin degree of freedom is included. For sufficiently large U/	 in this case the Kondo effect
is active at odd average dot filling, leading to minor modifications of the scenario discussed
above. In particular, at large δ/	 the T = 0 transmission peaks are Kondo plateaus rather than
Lorentzian-like CB peaks. Across these Kondo plateaus the phase shows a shoulder at θ ≈ π/2.
In contrast, the behaviour at small δ/	 appears to be almost unaffected by the spin degree. A
study of the combined effect of finite temperature and spin is left for future work.
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