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Recent experiments have demonstrated single-site resolved observation of cold atoms in optical
lattices. Thus, in the future it may be possible to take repeated snapshots of an interacting quantum
many-body system during the course of its evolution. Here we address the impact of the resulting
Quantum (anti-)Zeno physics on the many-body dynamics. We use time-dependent DMRG to
obtain the time evolution of the full many-body wave function that is then periodically projected
in order to simulate realizations of stroboscopic measurements. For the example of a 1-D lattice of
spin-polarized fermions with nearest-neighbor interactions, we find regimes for which many-particle
configurations are stabilized and destabilized depending on the interaction strength and the time
between observations.

Introduction.— In the last years ultracold atoms in op-
tical lattices have proven to be a versatile tool to study
various quantum many-body phenomena [1, 2]. Recently,
tremendous progress has been achieved by implement-
ing single-site resolved detection [3, 4] and addressing
[5] of atoms. This opens the path for investigating the
evolution of non-equilibrium quantum many-body states
by taking snapshots revealing the position of each single
atom. For simpler systems, the effect of frequent observa-
tions on the decay of an unstable state (or the dynamics
of a coherently driven transition) has already been dis-
cussed and observed, leading to the notion of the Quan-
tum (anti-)Zeno effect [6–9]. Zeno physics has also been
seen in cold-atom experiments with atomic loss channels
[10] and was theoretically addressed in [11–13]. Exper-
iments with single-site detection, however, would allow
to explore the effect of observations on the dynamics of
a truly interacting quantum many-body system. Here
we exploit a numerically efficient approach to simulate
the repeated observation of many-particle configurations
in interacting lattice models. This represents an ideal-
ized version of the dynamics that may be realized in fu-
ture experiments. We illustrate the main features of this
“stroboscopic” many-body dynamics in the case of a 1-D
lattice of spin-polarized fermions with nearest-neighbor
interactions. We find a variant of the Quantum Zeno Ef-
fect and discuss its tendency to inhibit or accelerate the
break-up of certain many-particle configurations. Inter-
estingly, the lifetime of such particle clusters depends in
a non-monotonous fashion on the time interval between
observations. These features may be seen, for example,
in the expansion dynamics of interacting atomic clouds
in a lattice.

Technique.— Ideally, each observation is a projective
measurement in the basis of many-particle configurations
(occupation number states in real space). However, due
to the exponentially large number of states, we need a
numerically efficient way to sample such outcomes. We

start by drawing the position of the first particle from
a random distribution given by the one-particle density.
Afterwards, we draw the position of the second particle,
conditioned on the location of the first one, and proceed
iteratively. In doing so, we build on the fact that the
n-particle density ρn factorizes into conditional proba-
bilities,

ρn(s1, . . . , sn) = ρ1(s1) ·
n∏
i=2

ρi(si|si−1, . . . , s1), (1)

where si denotes the position of the ith particle and
ρi(si|si−1, . . . , s1) is the conditional probability of find-
ing the ith particle at site si given that there are i − 1
particles at the sites s1, . . . , si−1. Using this approach,
only n · Ns values of joint probability densities have to
be calculated, in comparison to the full number

(
Ns

n

)
of

possible many-body configurations. This approach relies
on being able to calculate efficiently both the pure time
evolution between observations and the i-particle den-
sities (1 ≤ i ≤ n). For the present work, we use the
time-dependent DMRG [14–17], which is an extremely
powerful method for interacting 1-D systems. For the
fermionic model considered below, it is numerically even
more efficient to draw the position of the first particle
as before and then project the state onto those config-
urations where a particle is present at the selected site.
After rescaling the resulting state, the new one-particle
density is calculated. From this distribution we draw the
position of the second fermion, excluding all sites already
occupied by a fermion, and iterate the steps for the re-
maining fermions.

Model.— In this paper, we study spin-polarized
fermions in a 1-D lattice governed by the Hamiltonian

Ĥ = −J
∑
i

(
ĉ†i ĉi+1 + h.c.

)
+ V

∑
i

n̂in̂i+1 . (2)

Here, ĉi(ĉ
†
i ) denote fermionic destruction (creation) oper-

ators on lattice site i, and n̂i is the particle number. The

ar
X

iv
:1

10
2.

16
05

v1
  [

co
nd

-m
at

.q
ua

nt
-g

as
] 

 8
 F

eb
 2

01
1



2

first term describes hopping with amplitude J between
neighboring sites, the second encodes the interaction be-
tween fermions at neighboring sites. The Hamiltonian
displays a dynamical V 7→ −V symmetry which shows
up in expansion experiments [18]. Following analogous
steps as in [18], we can conclude: If both the initial state
and the experimentally measured quantity Ô are invari-
ant under both time reversal and π–boost, the observed
time evolution 〈Ô(t)〉 is identical for repulsive and attrac-
tive interaction of the same strength. Here, a π–boost
refers to a translation of all momenta by π. The ini-
tial occupation number states and the n-particle density
observables in our case fall within the scope of this the-
orem. Thus, the only relevant dimensionless parameters
in our scenario are |VJ | and the rescaled time between
observations, J∆t.
Single particle.—We first briefly turn to the single-

particle case, with V = 0 in Eq. (2). This leads to a
tight-binding band E(k) = −2J cos(k). A particle lo-
cated initially at a single site is in a superposition of all
plane wave momenta k = −π . . . π. After a time t, the
probability of detecting it at a distance l from the initial
site is ρ(l, t) = J 2

|l|(2Jt), where J is the Bessel function

of the first kind. This is shown in Fig. 1(a). The par-
ticle moves ballistically, with 〈l2〉 = 2(Jt)2. When the
particle is observed stroboscopically, at intervals ∆t, the
ballistic motion turns into diffusion. In this case, after m
time steps of duration ∆t = t/m, we have 〈l2〉 = 2J2t∆t.
Thus the motion slows down, and in the limit of an in-
finite observation rate (∆t → 0), the particle is frozen,
which is known as the Quantum Zeno effect.
Dynamics of non-interaction fermions.— After each

observation, the many-particle wave function is a Slater
determinant of single particle wave functions, and for
non-interacting fermions this remains true even during
the subsequent evolution. Using Wick’s theorem, the n-
particle density of these N fermions can be written as
(see also [19]):

ρn(s1, . . . , sn; t) =
(N − n)!

N !

∣∣∣∣∣∣
Ms1s1 . . . Ms1sn

. . . . . .
Msrsn . . . Msnsn

∣∣∣∣∣∣ . (3)

Here, Msksl =
∑N
j=1 Tskmj

(t)T ∗slmj
(t), where Tkl(t) =

i(k−l)Jk−l(2Jt) is the propagator for one fermion, and
the sum is taken over all sites mj that were occupied
at the initial time. The normalization is chosen such
that

∑
s1,...,sn

ρn(s1, . . . , sn; t) = 1. Note that the one-
particle density ρ1 is just the sum of the individual den-
sities (Fig. 1b). Motion in arbitrary potentials would be
captured by different propagators Tkl.
Numerical details.— For the interacting case to be dis-

cussed now, we use a tDMRG simulation, with time steps
of Jδt = 0.1, a lattice of typically 115 sites, and keeping
up to approximately 1000 states, at a truncation error
of 10−6. The n-particle densities are evaluated by calcu-
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Fig. 1. Time evolution of the density profile of fermions ex-
panding in a lattice without observation. (a) Single fermion
for comparison. (b-d) Expansion of 13 fermions initially
located at adjacent lattice sites for increasing interaction
strength.

lating expectation values of the tDMRG wave functions.
For the non-interacting case we checked the tDMRG den-
sity against the exact formula (3) for times Jt ≤ 20. Note
that tDMRG has been employed for dissipative dynamics
of cold atoms recently [20].

Stroboscopic many-body dynamics.— We will focus on
an experimentally interesting scenario, namely the ex-
pansion of an interacting cloud from an initially confined
state. Such an expansion in 2D was observed in an ex-
periment with 2-species fermions in [18]. We will first
briefly address the evaporation itself and then discuss
qualitatively the resulting stroboscopic dynamics, with a
more refined analysis presented further below. Fig. 1(b-
d) shows the effect of the interaction on the free (unmea-
sured) time evolution of the density profile. For increas-
ing interaction the fermions tend to remain localized near
their initial positions. For large interaction strengths
|V/J | ? 3 and the times shown here, tJ < 16, a more
detailed analysis reveals that evaporation proceeds via
the rare event of a single fermion dissociating from the
cluster. This particle then moves away ballistically. The
evaporation of particles off the edge of the confined cloud
is hindered by the formation of bound states. This is a
crucial phenomenon we will also encounter in the con-
text of repeated measurements. For smaller interaction
strengths (|V/J | > 2), the fermions split gradually into
a larger and larger number of clusters as time increases.
The parameter regimes in which the model described by
Eq. (2) exhibits diffusive or ballistic transport was ad-
dressed using tDMRG in [21]. The effects of stroboscopic
observation are shown in Fig. 2, for typical realizations
of this stochastic process. For non-interacting fermions
we find the behavior expected from the single particle
case. The spread (and thus, the diffusion constant) in-
creases with larger observation time intervals ∆t. For
very small J∆t (strong Zeno effect), the motion is diffu-
sive with a small diffusion constant that becomes inde-
pendent of |V/J |. In general, it is useful to discuss the
“lifetime” of the initial inner cluster that evaporates via
expansion. For the interacting case, the lifetime is short-
est at some intermediate observation time interval ∆t,
while it is enhanced again for large ∆t. Apparently, at
very large |V/J |, the lifetime may have yet another local
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Fig. 2. Density plot of specific realizations for the expansion
of 13 fermions with site-resolved detection during the evo-
lution. We show the full evolution of density even between
observations, which collapse the many-body wavefunction at
regular time intervals J∆t (as indicated by the dashed lines in
panel h). Without interaction (a-d) the lifetime of the initial
configuration decreases for larger J∆t, while for large interac-
tion the lifetime is shortest for intermediate observation times
J∆t (h,l). For small J∆t the dynamics becomes independent
of |V/J |, see (a,e,i).

maximum for intermediate ∆t, see Fig. 2(j). We confirm
this striking non-monotonous behavior of the lifetime by
simulating 400 realizations for each panel shown in Fig.
2 and plot the average number of fermions at the central
15 lattice sites as a function of time, in Fig. 3. For suffi-
ciently large J∆t and |V/J |, this number decays roughly
linearly at a rate that sets the inverse lifetime.

We will now see that the features observed here can be
mainly attributed to two ingredients: a bound state and
the two-level dynamics between the initial state and the
state with a fermion detached from the others.

Doublets and the role of interactions.— The effect of
interactions can be discussed already for the stroboscopic
dynamics of two fermions. We focus on the decay of a
doublet, i.e. two fermions sitting at neighboring sites.

In the quantum Zeno limit, J∆t�1 (or J∆t� |2J/V |
for large |V |, see below) only single hopping events occur
during ∆t. The probability for a fermion hopping left or
right during ∆t is 2(J∆t)2. This leads to a rate equation
for the probabilities pl to find the two fermions l sites
away from each other:

d

dt
pl = 2J2∆t [pl+1 − pl + (1− δl,1)(pl−1 − pl)] . (4)

In this limit, the average decay time for a doublet is
〈Jt〉 = 1/2J∆t, independent of V , compare with Fig. 2
(a,e,i).
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Fig. 3. For the parameters of Fig. 2, each panel shows the av-
erage number of fermions remaining at the 15 central lattice
sites as a function of evolution time t for different values of
J∆t. The thin dotted line corresponds to an evolution with-
out observation. (a) Without interactions, the lifetime de-
creases monotonically with increasing J∆t. (b) At V/J = 3.8,
the lifetime increases again for large J∆t. (c) At large inter-
actions, V/J = 9, the lifetime is non-monotonous even for
intermediate J∆t; compare J∆t = 0.3, 0.7, 1.0. Note that the
lifetimes in (a-c) are almost identical for J∆t = 0.1.

For larger J∆t, the interaction will become important.
It gives rise to a bound state when the particles come
close to each other (this effect also exists for clusters of
more particles [22]). It is convenient to separate the dy-
namics of the 2-particle states into relative and center-
of-mass (c.o.m.) motion. Considering the basis |l,K〉 =
1√
N

∑
j exp{iK[j+ l/2]}c†jc

†
j+l|vac〉 of the 2-particle sec-

tor with relative coordinate l, center of mass coordinate
j+ l/2, and total wavenumber K = k1 +k2, the action of
the Hamiltonian (2) is H|l,K〉 = |K〉 ⊗ HK |l〉. The first
part describes a plane wave with c.o.m. wavenumber K,
the second the relative motion, which is described by an
effective Hamiltonian

HK |l〉 = −2JK
[
|l+ 1〉+ (1− δl,1)|l− 1〉

]
+ V δl,1|l〉, (5)

with a hopping amplitude JK = J cos(K/2) depend-
ing on K. We now discuss the decay of a doublet
(see Fig. 4(a)) with the help of the doublet survival
probability PD(t) =

∑
L′ |〈l = 1, L′|e−iHt|l = 1, L〉|2,

where L and L′ are c.o.m coordinates. A bound
state exists if |V | ≥ |2JK |. It is given by |ψK〉 ∝∑∞
l=1(−JK/V )l−1|l〉. In the absence of observations

the doublet survival probability is for t → ∞ given by
PD(∞) = 1

2π

´ π
−π dK |〈ψK |l = 1〉|4. Specifically, in the

more interesting case of large |V/2J | ≥ 1, we have

PD(∞) = 1− (2J/V )
2

+
3

8
(2J/V )

4
. (6)

While PD(∞) is determined by the bound state, the evo-
lution for times Jt < 1 is mostly determined by the two-
level dynamics connecting |l = 1〉 and |l = 2〉. In this
short-time limit, we find

PD(t) = 1− 1

π

ˆ π

0

dK
cos2(K/2)

ξ2K
sin2(2JξKt), (7)

with ξK =
√

( V4J )2 + cos2(K/2) (note the integral over

K). In the strongly interacting regime we find three
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Fig. 4. (a) Doublet decay level scheme. The doublet is sepa-
rated from the continuum of unbound states by an energy gap
V . (b) Probability PD of finding the doublet intact after an
evolution time Jt. Dashed black lines correspond to PD(∞)
found in Eq. 6. (c) Single trajectory of PD for a time evolu-
tion subject to observations, with J∆t = 0.6 and V/J = 6.
(d) Doublet survival probability PD as function of the obser-
vation time interval J∆t ≥ 0.02 for a fixed total evolution
time Jt = 18. Note the non-monotonous dependence on J∆t
for finite interactions.

regions for the doublet survival probability: for times
Jt� ξ−1K=0 the probability is independent of the interac-
tion strength, PD(t) = 1−2(Jt)2, for times ξ−1K=0 < Jt <
1 one expects an oscillating behavior of PD(t) given by
Eq. (7) with a period approximately 2π

V for |V/4J | � 1,
and for Jt� 1 the probability approaches PD(∞).

The full evolution of PD(t) using exact diagonalization
is shown in Fig. 4. Without observations (Fig. 4(b)),
PD(t) is interaction-independent at small times Jt > 0.2.
Temporal oscillations in PD develop for higher interac-
tion strengths (V/J ? 3.5). The non-monotonic behavior
at small times suggests that a change of the observation
time interval in the stroboscopic dynamics may have a
drastic effect on the survival probability. This effect is
confirmed in Fig. 4(d). In that figure, the observation
time interval J∆t is varied, while keeping the total evolu-
tion time constant, Jt = 18 (with a corresponding num-
ber of observations t/∆t). The stroboscopic evolution
is interaction-independent up to times J∆t = π

V/J . For

larger J∆t there is a drastic recovery of PD, which can
show oscillations as a function of ∆t. The qualitative
behavior matches well the expectations from Fig. 4(b)
and does not depend in detail on the total time t. Thus
we have explained the most prominent features of the
stroboscopic many-body dynamics, shown in Fig. 2 and
Fig. 3, through our the discussion of the doublet.

Other features that can be observed in the stroboscopic
dynamics are the motion of whole clusters of fermions
through the lattice and the exchange of fermions be-
tween clusters, as shown in Fig. 5. As expected, clus-
ters are very stable for high interaction strengths. The
hopping amplitude for a cluster of n fermions is of order
Jn/ |V |n−1, decreasing strongly for larger clusters, as can
be perceived in Fig. 5(c).
Experimental realization and outlook.— Our choice of
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Fig. 5. Density plot for the time evolution of an initial state
with clusters of different numbers of fermions and observa-
tions with time steps J∆t = 2. (b,c) For large interaction
strength we find clusters moving as a whole (indicated by tri-
angles). Also processes with single fermions being exchanged
between clusters or attached to a new cluster are observed,
indicated by loops.

Hamiltonian was primarily dictated by simplicity, as a
one-species fermionic model in 1D. This Hamiltonian is
related to the Heisenberg XXZ model by Wigner-Jordan
transformation. The stroboscopic dynamics is identi-
cal for both models as the outcome of observations de-
pends only on spatial density-density correlations. These
Hamiltonians can be experimentally realized in optical
lattices with fermionic polar molecules [23] or 2-species
fermions in the insulating phase [24]. For both real-
izations single-site detection has not yet been imple-
mented, but ideas exists and experimental progress is
being made towards this goal. The generic features dis-
cussed in this paper should be found as well in other
model, e.g. the Bose-Hubbard model (where a double
occupancy would correspond to the doublet state). Ex-
perimentally, the most challenging step needed to ob-
serve the interplay of many-body dynamics and measure-
ments discussed here would be to make the observations
non-destructive, whereas currently atoms are heated into
higher site orbitals. Beyond the scenarios discussed here,
one may also be interested in the influence of external
driving or measurements that are either weak or target
only specific sites.
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[23] H. P. Büchler, A. Micheli, and P. Zoller, Nature Physics

3, 726 (2007).
[24] L.-M. Duan, E. Demler, and M. D. Lukin, Phys. Rev.

Lett. 91, 090402 (2003).

http://dx.doi.org/10.1088/1751-8113/41/49/493001
http://dx.doi.org/10.1088/1751-8113/41/49/493001
http://dx.doi.org/10.1126/science.1155309
http://dx.doi.org/10.1088/1367-2630/11/1/013053
http://dx.doi.org/10.1103/PhysRevLett.102.040402
http://dx.doi.org/10.1103/PhysRevA.82.022120
http://dx.doi.org/10.1103/PhysRevA.82.022120
http://dx.doi.org/10.1103/PhysRevLett.93.040502
http://dx.doi.org/10.1088/1742-5468/2004/04/P04005
http://dx.doi.org/10.1103/PhysRevLett.93.076401
http://dx.doi.org/10.1103/PhysRevLett.93.076401
http://dx.doi.org/10.1103/PhysRevB.70.121302
http://arxiv.org/abs/1005.3545v1
http://dx.doi.org/10.1103/PhysRevA.82.063605
http://dx.doi.org/10.1103/PhysRevA.82.063605
http://dx.doi.org/10.1103/PhysRevB.79.214409
http://dx.doi.org/10.1038/nphys678
http://dx.doi.org/10.1038/nphys678
http://dx.doi.org/10.1103/PhysRevLett.91.090402
http://dx.doi.org/10.1103/PhysRevLett.91.090402

	Stroboscopic observation of quantum many-body dynamics
	Abstract
	Acknowledgments
	References


