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We propose a simple phenomenological model for an ultrasmall ferromagnetic grain, formulated in terms of

the grain’s discrete energy levels. We compare the model’s predictions with recent measurements of the

discrete tunneling spectrum through such a grain. The model can qualitatively account for the observed

features if we assume ~i! that the anisotropy energy varies among different eigenstates of one grain, and ~ii! that

nonequilibrium spin accumulation occurs.

DOI: 10.1103/PhysRevB.64.220401 PACS number~s!: 73.23.Hk, 75.50.Cc, 73.40.Gk

What are the properties of individual quantum states in
the electronic excitation spectrum of a nanometer-scale fer-
romagnetic particle? This is becoming an increasingly impor-
tant question, since the size of memory elements in magnetic
storage technologies is decreasing extremely rapidly,1 and
particles as small as 4 nm are coming under investigation.2 In
this size regime, the excitation spectrum becomes discrete;
indeed, Guéron, Deshmukh, Myers, and Ralph ~GDMR!,3

have recently succeeded in resolving individual quantum
states in the spectrum of ferromagnetic Cobalt nanograins,
using single-electron tunneling spectroscopy. They found
complex nonmonotonic and hysteretic energy level shifts in
an applied magnetic field and an unexpected abundance of

low-energy excitations, which could not be fully understood
within the simple models used for ferromagnetic nanograins
so far.3,4

In this Communication, we propose a phenomenological
model for ferromagnetic nanograins that is explicitly formu-
lated in terms of the discrete states occupied by the itinerant
conduction electrons and capable of qualitatively explaining
the observed features. The model is similar in spirit to that
advanced independently by Canali and MacDonald,4 but our
analysis includes two further ingredients beyond theirs: ~i!
mesoscopic fluctuations of the anisotropy energy ~i.e., it may
vary among different eigenstates!, and ~ii! nonequilibrium
spin accumulation.

Experimental Results. GDMR studied Co particles 1–4
nm in diameter. Assuming a hemispherical shape, the num-
ber of atoms in such grains is in the range Na'20–1500,
and the total spin, s0'0.83Na ,5 thus is s0'17–1250. In
GDMR’s devices, a grain is connected to two aluminum
electrodes via aluminum oxide barriers. Its tunneling con-
ductance consists of a series of distinct peaks ~see Fig. 2 in
Ref. 3!, whose positions yield a set of tunneling energies of

the form6 DE f i
6[E f

N61
2E i

N , each corresponding to the en-

ergy cost of some rate-limiting electron tunneling process
ui&N→u f &N61 onto or off the grain. Here ui&N denotes a dis-

crete eigenstate, with eigenenergy E i
N , of a grain with N

electrons, etc.
As the magnetic field is swept, the resonances for Co

grains undergo energy shifts and crossings ~Fig. 3 in Ref. 3,
and Ref. 7!. The resulting tunneling spectra have several
properties that differ strikingly from those of previously

studied nonmagnetic Al and Au grains:8,9

~P1!: Many more low-energy excitations are observed
than expected: For all values of the magnetic field, the mean

level spacing is d̄obs&0.2 meV. This is much smaller than

expected from the naive single-particle estimates d̄maj

'4.6 eV/s0 or d̄min'1.2 eV/s0 ~with s0&1250) for the
majority- and minority-spin mean level spacings near the
Fermi energy of Co.10,5

~P2!: In the small-field regime (m0H,0.2 T), discon-
tinuous hysteretic switching occurs at a certain switching
field m0Hsw ~typically 0.120.2 T), due to a sudden change
in direction ~henceforth called ‘‘reversal’’! of the magnetic
moment. Moreover, the H dependence of tunneling reso-
nance energies has continuous nonmonotonic variations,
which differ seemingly randomly from level to level ~Fig. 3
in Ref. 3, and Ref. 7!.

~P3!: In the large-field regime (uHu@uHswu), the reso-
nance energies depend roughly linearly on H, with H slopes
that almost all have the same sign for a given grain; in par-
ticular, slopes of opposite signs due to Zeeman splitting of
spin-up and spin-down levels8,9 are not observed ~Fig. 4 in
Ref. 3, and Ref. 7!.

Point ~P2! indicates immediately that an independent-
electron approach to the energy levels is not sufficient, be-
cause the energy of a given state depends on the orientation
of the magnetic moment produced by all the electrons within
the particle. We shall argue that also points ~P1! and ~P3! are
related to the many-electron spin structure within the par-
ticle.

Model Hamiltonian. We propose to model a nanoscale
magnet with discrete excitations by the following ‘‘minimal’’
Hamiltonian: H5H01HC1Hexch1HZee1Hanis , where HC

is the Coulomb charging energy for a nanoparticle containing
N electrons, and

H05(
js

« jc js
† c js , Hexch52

U

2
SW •SW , ~1!

HZee52hSz, Hanis52(
ab

(
i j

S i
aK i j

abS j
b , ~2!

with h5geffmBm0H . Here H0 describes the kinetic energy of
a single band of single-electron states u j ,s& , labeled by a
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discrete index j and a spin index s5(↑ ,↓), with the spin
quantization axis chosen in the z direction. The exchange,
Zeeman, and anisotropy terms, Hexch, HZee, and Hanis, are

functions of the level-j spin operators S j
a

5
1
2 (s8sc js

† sss8

a
c js8

~where sa are Pauli matrices, with a

5x ,y ,z), so that SW 5( jSW j is the total spin vector. Hexch is a
rotationally invariant term which models the effects of an
exchange field and forces the system to adopt a nonzero total
ground state spin, say s0. On account of this term, spins

aligned parallel or antiparallel to ^SW & may be thought of as
forming ‘‘majority’’ and ‘‘minority’’ bands, which effectively
rotate rigidly together with the magnetization direction. We

shall take the mean level spacings ( d̄maj , d̄min) near the re-
spective Fermi energies, and the exchange splitting of the
Fermi energies, DF[«F,maj2«F,min ('2 eV for Co!, as
characteristic parameters of the model. The magnitude of U

may then be estimated as U'DF /s0, since stability of the
ground state spin s0 implies4 the relation DF5U(s011/2)
1d0, where d0(;1/s0) is a small, grain-dependent energy

satisfying 2( d̄maj2U/2),d0, d̄min2U/2. HZee describes

the spin Zeeman energy in an external magnetic field HW

5Hẑ . Finally, Hanis models the combined effects of crystal-
line, shape, and surface anisotropies, etc., in terms of a Her-

mitian, traceless tensor @(aK i j
aa

50# , which describes the en-

ergy cost for rotating the various spins SW j . We split the
tensor into an ‘‘average’’ and a ‘‘fluctuating’’ part by writing

K i j
ab

5Kab
1k i j

ab . The Kab part dominates since all levels

contribute coherently, and, assuming Kab}1/Vol, it makes an
extensive (}Vol) contribution to the total energy. The sim-
plest nontrivial form that this term might take is a uniaxial
anisotropy

Huni52kN~SW • n̂ !2/s0 , ~3!

where n̂ is the unit vector in the easy-axis direction ~at, say,

an angle u from ẑ) and kN(.0) is a volume-independent

constant. The fluctuating term k i j
ab causes the total anisotropy

energy to depend on which single-particle levels are occu-
pied. It is a different ingredient relative to previous models
of magnetic switching, which required only a single anisot-
ropy energy function for the whole system, as is appropriate
when only the ground state magnetic properties are
pertinent.11

Basis states. It is convenient to use the eigenstates of
H(K50) to construct a set of ‘‘bare’’ basis states. Since

@H,SW #50, these states can be grouped into spin multiplets

that are labeled by their SW •SW and Sz eigenvalues, say s(s

11) and m. For example, the bare ground state of H(K
50) for given N, s, and h (.0), say

us ,s&0
N[)

j51

n↑

c j↑
† )

j51

n↓

c j↓
† uvac& , ~4!

is a member of a spin multiplet of 2s11 states, us ,m&0
N

}(S2) (s2m)us ,s&0
N . Here n↑/↓5N/26s , and S25Sx2iSy is

the spin-lowering operator. For Kab
5” 0 ~but still k i j

ab
50) the

true low-energy eigenstates, us ,m&N, are linear superpositions

of the bare states in the multiplet us ,m&0
N ~with us ,m&N

→us ,m&0
N as uKabu/h→01). We shall call the states us ,m&N

the spin wave multiplet, since each can be viewed as a ho-
mogeneous spin wave. By creating additional single-particle
excitations, other, higher-energy multiplets can be built.
However, their eigenenergies lie higher than those of the spin
wave multiplet us ,m&N by an amount which is at least of
order the single-electron level spacing, i.e., rather large com-

pared to d̄obs @cf. ~P1!#; thus the mechanism causing the ob-
served abundance of low-energy excitations, whatever it is,
must have its origin in spin excitations, not purely in single-
particle excitations.

Anisotropy fluctuations. Let us first turn to the behavior of
the tunneling resonances for small magnetic fields @see ~P2!#.
The jumps at the switching field have been attributed to a
sudden reversal of the nanoparticle’s magnetic moment,3

which occurs when the energy barrier between a metastable
state and the true ground state is tuned to zero by the applied
field. To illustrate how such jumps arise in our model, let us
~for simplicity! take the anisotropy to be uniaxial @Eq. ~3!#
and consider the case in which the changing magnetic field
only rotates the total spin moment, without changing its
magnitude.12 We have numerically diagonalized HZee1Huni

as a function of h/kN for s i51000 and s f5s i61/2 to deter-
mine the ground state energies and the corresponding tunnel-

ing energies DE f i
6 ~Fig. 1!. The latter indeed show a jump at

hsw . However, if we neglect anisotropy fluctuations by

choosing kN5kN11 ~Fig. 1, solid lines!, the DE f i
6 lines also

have two unsatisfactory features: ~i! An upward ~downward!

jump in DE f i
1(h) as uhu increases past uhswu is always fol-

lowed by a positive ~negative! large-h slope, whereas it is
observed experimentally @e.g., Fig. 3~a! in Ref. 3# that either

upward or downward jumps can occur for states having a
given large-h slope; and ~ii!, beyond the switching field, the
dependence on h is monotonic ~close to linear!, in disagree-
ment with recent data ~P3!.7 All attempts we made to explain
such behavior by choices of Kab corresponding to more com-
plicated than uniaxial anisotropies, or by higher order terms
such as KabcdSaSbScSd ,13 were unsuccessful.

Now, the very fact that the field dependence of each reso-

FIG. 1. Tunneling energies DE f i
1 for HZee1Huni , plotted as

functions of h/kN sweeping positive to negative, illustrating the

effects of anisotropy fluctuations (dk65kN612kN) for the transi-

tions from us i ,s i&
N to ~A! us i2

1
2 ,s i2

1
2 &N11 and ~B! us i1

1
2 ,s i

1
1
2 &N11.
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nance in Refs. 3 and 7 differs so strikingly from that of all

others implies that the anisotropy energy fluctuates signifi-

cantly from eigenstate to eigenstate, which we associate with

k i j
abÞ0 in our model. Although the contribution of such ran-

dom fluctuations to the total energy is nonextensive, their

effect on energy differences in which extensive contributions

largely cancel, can be very significant. A detailed statistical

analysis of anisotropy fluctuations is beyond the scope of this

paper. Instead, we shall mimic the effects of k i j
abÞ0 by sim-

ply using two different anisotropy constants in Huni , say kN

and kN61[kN1dk6 , for N- or (N61)-electron states. kN

can be estimated from the switching field kN'm0mBHsw ~cf.

Fig. 1! yielding kN'0.01meV.14 Now, as illustrated in Fig.

1, dk6 /kN in the range of a few percent is sufficient to re-

verse the sign of the energy jumps at HSW . Note that dk6

Þ0 also causes the spectral lines to exhibit rather strong

nonmonotonic ‘‘kinks’’ near hsw , whose amplitudes are of

order s0dk6 . Qualitatively similar nonmonotonicities have
indeed been observed recently,7 with kink amplitudes on the
scale of a few 0.1 meV, in rough agreement with s0dk6 for
s0.1000.

Anisotropy fluctuations in the range of a few percent are
not unreasonable in nm-scale devices. Calculations for
transition-metal clusters show that single spin flips can pro-
duce a significant change in the magnetic anisotropy
energy,15 and measurements of Gd clusters indicate that an-
isotropy energies can vary significantly for clusters differing
only by a single atom.16

We now turn to the low-energy excitations observed in
Refs. 3 and 7 ~P1!. It is natural to ask3,4 whether these might
correspond to spin wave transitions of the form us i ,s i&N

→us f ,m f&N61 for different m f values. However, this does
not seem to be the case, for three reasons: ~i! It can be shown
that only two transitions ~namely us0 ,s0&→us061/2,s0

61/2&) have significant weight.4,17 Resonances associated
with final states us f ,m f& that differ only in m f would ~ii!
have a spacing of order kN('0.01 meV), which is signifi-
cantly smaller than observed, and would ~iii! exhibit a sys-

tematic increase in the magnitude of their slope (}us i

2m f u) for high magnetic fields that was not observed in
experiment.

Nonequilibrium. Since the large density of resonances
~P1! cannot be explained by equilibrium transitions ~neither
single particle excitations nor spin wave excitations!, we
must explore nonequilibrium effects: In general, N-electron
states other than the ground state can be populated during the
process of current flow, and this may affect the experimental
tunneling spectrum.18,6 Figure 2 illustrates the consequences
as applied to a ferromagnetic grain. Even if a first tunneling
event causes a ‘‘charging’’ transition from the N-electron
ground state uG&N to the (N61)-electron ground state
uG&N61, it may be energetically possible for the subsequent
‘‘discharging’’ tunneling transition to return the particle to an
excited N-electron state ua&N instead of uG&N, provided the

applied voltage is sufficiently large, eV>Ea
N

2EG
N .19 Like-

wise, further charging and discharging transitions may allow
any of a large ensemble of states to be occupied at higher and
higher levels of an energy ladder, terminating only when an

energy-increasing transition requires more energy than the
applied voltage provides. As the voltage is increased, the
total current ~conductance! may increase stepwise ~show
peaks! when thresholds are crossed to allow higher-energy
transitions up the nonequilibrium ladder, thereby changing
the occupation probabilities of the ensemble of nonequilib-
rium states and opening new tunneling channels.

In a ferromagnetic particle, in addition to the nonequilib-
rium occupation of single-electron states discussed previ-
ously for nonmagnetic particles,18 nonequilibrium spin exci-
tations are possible, too, if the spin-flip rate Gsf is smaller
than the tunneling rate G tun .20 In this case, a ladder of tran-
sitions @illustrated in Fig. 2~A!# will occur between states
with different total spin s, causing each to have a finite oc-
cupation probability and thus leading to spin accumulation

on the grain.21 Figure 2~A! illustrates this for the simplest
nontrivial case, namely a ladder of spin multiplet ground
states us ,s&.22 Figure 2~B! shows the corresponding differen-
tial conductance, calculated by solving a master equation for
the population of the states of the ladder. The resonance peak
spacing (dE res) and the number of peaks (n res) for such a
ladder can readily be calculated @using Eq. ~2! of Ref. 4#.
n res depends on whether the charging transition adds/
removes an electron to/from the grain ~to be distinguished by
an index p561), and on whether it is a majority/minority
electron ~to be distinguished by an index a561). One finds

dE res5 d̄min2U/2 for a521, and d̄maj2U/2 for a51. Us-
ing the model parameters estimated above with s0'1000,
the first quantity gives a spacing of '0.2 meV, as is ob-
served. The second quantity is larger, '3.6 meV. A detailed
analysis17 shows that n res21 equals the smallest integer
larger or equal to

FIG. 2. Nonequilibrium spin accumulation in a ferromagnetic

nanoparticle: ~A! Tunneling transitions can cause an energy ladder

of states with different total spins to be populated (s0 denotes the

ground state of the spin-s0 multiplet, etc.!. ~B! The corresponding

differential conductance as a function of energy, normalized by its

first maximum and calculated by standard methods ~Ref. 21!. @Pa-

rameter choices: h50, Hanis50, s051000, DE0,tot
ap

50, T

580 mK, Bp50.4, a tunnel junction resistance ratio of RL /RR

50.1, and a Coulomb blockade threshold of 7 meV ~see sample 3

in Fig. 2 in Ref. 3!; we neglected energy and spin relaxation and

assumed that charging transitions add minority electrons, so that

dE res5 d̄min2U/2.# No significance should be attached to peak

heights here, since they depend on ~unknown! tunneling matrix

elements, which for simplicity were all taken to be equal.
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2EC
thresh

22BpDE0,tot
ap

~Bp2B2p!~ d̄maj1 d̄min2U !2a~ d̄maj2 d̄min!
, ~5!

where Bp5@11Cp /C2p#21 contains the ratio of junction

capacitances involved in processes p and 2p , DE0,tot
ap is the

energy difference between states us01ap ,s01ap& and

us0 ,s0&, and EC
thresh is the threshold charging energy ~energy

of the first peak in the differential conductance!. The predic-

tion that n res increases linearly with EC
thresh ~Ref. 22! is in

qualitative agreement with Fig. 2 of Ref. 3, and could be
checked explicitly in future devices with gate electrodes,

which would allow EC
thresh to be tuned.

A nonequilibrium scenario can also account naturally for
the fact ~P3! that the vast majority of the observed transitions
within a given sample shift in energy with a similar slope for
large magnetic fields. This will happen when all the nonequi-
librium threshold transitions correspond to tunneling events
with the same change of Sz ~see Fig. 2!, and therefore the
same Zeeman shift.

In conclusion, we have proposed a phenomenological

model for nanoscale magnets that treats magnetic interac-

tions within a many-electron picture. Its parameters were es-

timated from bulk properties of Co or experiment, except for

the total spin s0 and the strength of anisotropy fluctuations,

which were used as free parameters. The model offers a

framework for understanding recent experiments measuring

the discrete excitations of magnetic nanograins, provided

that we assume ~i! anisotropy fluctuations of a few percent

between different eigenstates within the same nanograin, and

~ii! nonequilibrium spin accumulation.
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3 S. Guéron, M.M. Deshmukh, E.B. Myers, and D.C. Ralph, Phys.

Rev. Lett. 83, 4148 ~1999!.
4 C.M. Canali and A.H. MacDonald, Phys. Rev. Lett. 85, 5623

~2000!.
5 D. A. Papaconstantopoulos, Handbook of the Band Structure of

Elemental Solids ~Plenum, NY, 1986!.
6 J. von Delft and D.C. Ralph, Phys. Rep. 345, 61 ~2001!.
7 M.M. Deshmukh, S. Kleff, S. Guéron, E. Bonet Orozco, A. Pa-
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