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One-dimensional density waves of ultracold bosons in an optical lattice
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We investigate the propagation of density-wave packets in a Bose-Hubbard model using the adaptive time-
dependent density-matrix renormalization group method. We discuss the decay of the amplitude with time and
the dependence of the velocity on density, interaction strength, and the height of the perturbation in a numeri-
cally exact way, covering arbitrary interactions and amplitudes of the perturbation. In addition, we investigate
the effect of self-steepening due to the amplitude dependence of the velocity and discuss the possibilities for an
experimental detection of the moving wave packet in time-of-flight pictures. By comparing the sound velocity
to theoretical predictions, we determine the limits of a Gross-Pitaevskii- or Bogoliubov-type description and
the regime where repulsive one-dimensional Bose gases exhibit fermionic behavior.
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[. INTRODUCTION direction. In previous studies, the motion of Gaussian wave

The study of strong interactions in one-dimensional Bosdackets has been investigated t'heor'etically fqr sma!l density

gases has recently attracted considerable interest, in particB€rturbations or broad perturbations in three dimensions both
lar the suggestion of Petrost al. [1] that in sufficiently With and without an optical lattic14-16. The sound ve-
dilute gases a regime appears in which one-dimensidi! locity in an optical lattice was studied [17]. These inves-

bosons exhibit properties similar to those of a noninteractin 'gigﬁg?ﬂ werr% Cgr?f'nsedsttgnfzevvrﬁr?'rpneaﬁf Waeﬁi'é Igsterae?'giqg’
Fermi gas. Following the realization of single-mode atomic 9 _properly sy y P P :

wires by using strong 2D opical latticég], this so-called Here, we focus on the case of one-dimensional systems at

Tonk ime has indeed b - i - low filling, i.e., with approximately one or less than one
[302] S gas regime has indeed been seen in recent expermeiysicie per site on average. This regime is of particular in-

. i ) terest, since it allows one to study the behavior of sound
Our aim in the present work is to study the propagation ofyayes near the transition from a superfluid to a Mott-

density waves in strongly interacting one-dimensional Bosemsylating regime, as has been realized experimentally by
Einstein condensates. Quite generally, the low-lying excitastsferle et al. [18]. The creation of a density perturbation
tions in a Bose-Einstein condensate are soundlike and corrgiith the width of a few lattice sites should be possible in
spond to fluctuations of the condensate phisé]. The these systems by the application of a localized laser beam
associated sound velocity depends on both the density arjd9].
interaction strength and is difficult to calculate microscopi- As first pointed out by Jakscét al., ultracold bosons in
cally in general. Beyond the weak-interaction limit, where aan optical lattice provide a perfect realization of the Bose-
Gross-Pitaevskii or Bogoliubov description applies, very fewHubbard mode[Eq. (1)] [32], which contains the interplay
results are available, except for the particular case of onbetween their kinetic energy and their on-site repulsive inter-
dimension. In that case an exact solution for the ground stataction. The recently developed adaptive time-dependent
and the elementary excitations is available for the continuundensity-matrix renormalization group metho@daptive
model with a short-range interaction through the well-knownt-DMRG) [21,22 is used to calculate the time evolution of
Lieb-Liniger solution of the 1D Bose gd%,8]. Experimen- wave packets. This method allows us to find the time evolu-
tally, density perturbations can be created by applying a lotion for both weak and strong coupling. In particular, it
calized potential to the system with a far-detuned laser beaworks best in an intermediate-interaction regime, where
[9,10]. Alternatively, a phase imprinting method can be usedpther methods are not reliable. We focus our investigation on
which allows one to create solitonic excitatigrid,12. the decay of the amplitude with time and on the sound ve-
In our present work, we study the evolution of density-locity, i.e., the velocity of propagation of an infinitesimal
wave packets in a one-dimensional system of ultracolgerturbation. In addition, we determine the velocity of propa-
bosons which are subject to an optical lattice along the axiafjation of a perturbation with finite amplitude, thus entering
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nonlinear effects which are difficult to discuss analytically perfluid state, the continuum limit can be performed by tak-

even in one dimension. ing Ja?=const anda—0. In this limit the Bose-Hubbard
We compare our numerical results in the limits of weakmodel becomes equivalent to the Lieb-Liniger mold&8],

and strong interaction to different approximations. For weak

interactions a continuum c_;les_cription_is applieo!, Whi_ch leads Hy., =f dx<i|&x\1’(x)|2+V(x)\PT(x)\If(x)

to a system of bosons with interaction, the Lieb-Liniger 2M

model[7,8]. We compare the resulting sound velocity with

our results and find good agreement up to intermediate inter- + g[qﬁ(x)]z[\]f(x)]Z), (2)

action strength. A further simplification is obtained by treat- 2

ing the Lieb-Liniger model in a hydrodynamical approach. 5 hosonic model with interaction of strengtiy and external
The sound velocity determined by this approach is that of &qtentialV. In this limit, the hopping parameter of the lattice
Gross-Pitaevskii-type description. It agrees with our resulty,qdel is related to the massg of the atoms byla?=1/2M
only for_ rather_ small interaction _st.rengths. In the limit of 54 the interaction strength to ti&interaction strength by
strong interactions and at low fillings, the Bose—HubbardUa:g_

model can be mapped onto a model of spinless fermions  gtarting from this continuum model and considering the
_[23_]. As_ ex_pe_cted, our numerical results for the sc_)und veloCinteraction in a mean-field approximation, the Gross-
ity in this limit smoothly approach the value predicted from piji5evskii equation can be derivéd]. Within this approxi-

this mapping to fermion§24]. o mation, the motion of density waves is described by the two
The paper is organized as follows. We first introduce the;qupled equationfs]

Bose-Hubbard model, the analytical approximations, and the
numerical method used. Then we investigate the motion of ap N d(vp) _ 0
the wave packet. We analyze the decay of the amplitude of ot ox
the perturbation and the dependence of the velocity, in par-

ticular the sound velocity, on system parameters like the P g (M P 1 &0
background density, the interaction strength, and the height M—U + —<—02+v> + —<gp- — X\,p) =0. (3
of the perturbation. Finally, we study how the presence of a at  ox\ 2 X 2M

wave packet can be detected experimentally from the inter|-_|ere p=[WP is the density andv=(1/2M)(W VW

ference pattern in a time-of-flight experiment. -¥VW¥)/p the velocity field. This equation gives a good

Il. MODEL description for systems in high dimensions or one-
dimensional systems with many particles per site. Lineariz-
ing the equations, one recovers the results of the hydrody-
us L namical approachs].
T a A . . . .
H= —J_E bjbj,1+H.C. +EE n(nj—1) + E gjh;, We now turn to the opposite limit of strong interactions.
=1 =1 =1 For low densitiesp<1 and strong interactions, the Bose-
(1) Hubbard Hamiltonian can be mapped to an effective model
of spinless fermions with correlated hopping and attractive
interactiong 23]

The Hamiltonian of the Bose-Hubbard model is given by
L-1

whereL is the number of sites in the cha T,andbj are the
creation and annihilation operators on giteand ﬁj:bijj is
the number operatd25]. In the limit of strong interactions, - 230
us>1 with u:=U/J, the atoms tend to localize. At integer Hg= -3 (Cjtlcj _TCJT+1CJ'—1+ H .C.)
filing p=N/L=1, 2.., where N is the total number of =1
bosons, an incompressible Mott-insulating phase with locked 272 L
density arises once is increased beyond a critical value -=> (A1 + Aj_p iy + O(IP/U?), (4
(u.=~3.37 forp=1 according td26] in the thermodynamic U=
limit). For weak interaction one finds a compressible super- here{c, T}—5.. i i therwi St
fluid phase. ExperimentalB, 18,27, the parameten can be V' o 16j:Cjrr =01 an |c2mr;1u ing otherwise, ang=c;c;.
varied over several orders of magnitude by changing the laPU€ 10 the correctiod(J*/U*), this mapping is only valid
tice depth. This allows one to tune through a superfluid-for u>1.
Mott-insulator transition, as first realized by Greirgdral. in
a 3D optical latticd 27]. As mentioned before, it is possible
to generate additional localized potentials using laser beams.
These external potentials are modeled by the last term in Eq. To study the evolution of a free wave packet in a homo-
(1). This term could as well describe arbitrary external po-geneous system we apply the recently developed adaptive
tentials, e.g., a parabolic trappifig5] or more complicated t-DMRG [20,21]. The adaptive t-DMRG is a numerical
structures. In the following we sét=1. method based on the well-known static DMR#Z3-3(J and
the time-evolving block-decimatiofTEBD) procedure de-
lIl. ANALYTICAL APPROXIMATIONS veloped by Vidal[22]. The method describes the time evo-
For weak interactions, or quite generally for a descriptionlution of wave functions in an essentially exact man(iier a
of the long-wavelength properties of a noncommensurate swetailed error analysis sef81]). In the calculation, the

IV. METHOD
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L=32, N=32, u=3, 1=0.3,5 =1.41

1.2
t=0 t=2.2 t=3.2
1.1 FIG. 1. Snapshots of the evolution of the den-
3 L B X e sity distribution are shown at different times. At
g 4 Y P xxj ol t=0, a Gaussian wave packet is present in the
§ ¥ ooy ¥ oot x’; center of the system. It splits up into two packets
S ool :' which move with the same speed in opposite
DMRG directions.
Gauss fit —
0.8 L

155705 0.5 10 15 —10-5 0 5 10 15 —10-5_0. 5 10 15
site | site | site

infinite-dimensional bosonic Hilbert space on a single site idast oscillations induced by the periodic lattice potential as
truncated to a finite valulg. We checked the consistency of long as the change in the density by the perturbation varies
our results by varyindNg. For a chain of length.=32 and  more slowly. Hence an upper bound for the change in the
not too high density, the results fblz=6 and 9 agreed well. kinetic energy is given bAE,;,~JAp. In total we demand
In the following we use units in which the lattice spaciag that AE~UAp(J/U+2p)<v, wherev is the energy level
=1 and the hoppind=1 (recall#=1). This means that times spacing obtained on approximating the wells by parabolic
are measured in units d@f/J and velocities in units o&dJ/%.  potentials. Forp~1 andJ/U =1, this condition is obeyed
provided thatyo < aﬁ/a”ap 10, whereas is the scattering
length. The lengthsa, anda, are the oscillator lengths per-
V. PREPARATION OF THE DENSITY PERTURBATION pendicular and parallel to the quasi-one-dimensional system.
The oscillator lengths are the length scales of the approxi-
ately parabolic potentials around the lattice minima. Note
that in this section we restored the dependencé fon better
comparability to experimental parameters.

To prepare a density perturbation in our system we appl
in Eq. (1), for t<0, an external potentia¢; of Gaussian
form,

/() = = Zpe 117 p(- 1), (5)

which is switched off for time$> 0. We determine the initial

state as the ground state of the corresponding Hamiltonian at A simple description of the evolution of a Gaussian wave

t=0 using a finite-system DMRG algorithm. Since DMRG packet for weak interactions can be obtained from a hydro-

produces site-dependent matrix product stde®, it can  dynamical approach. Linearizing E(8), one obtains a lin-

easily deal with the inhomogeneous density in our setup. ear wave equation. An initially Gaussian wave packet of
For weak perturbations, this potential creates an approxineight » and background densify therefore shows a time

mately Gaussian density packet evolution of the form:

VI. EVOLUTION OF THE WAVE PACKET

_i2
p]-(t < 0) =po(1 +279€ i /(2(72)). (6) p(x,t) :5[1 + ,r](e—(x— vt)%i262 + e+ Ut)2/2(r2)]. (7)

Note the difference between the parametemsnd7, which  Note that the background densiyin the continuum is re-
are used to describe the applied potential, and the parametegged to the background densipy in the lattice system by
o and 5, which determine the resulting density profile. Forp=p,/a, where the lattice spacing is restored. The wave
weak perturbations=0, and 7 is related toy via the com-  packet at=0 thus splits into two packets, which travel with
pressibility dp/ du~ 1/U. The background filling, differs  the same speed in opposite directions. Indeed this is the be-
from the filling’p not only by the effect of the perturbation havior found in our simulations at weak coupling. Figure 1
but also by boundary effects. shows snapshots of the evolution of a density-wave packet
One constraint for the description of the time evolution ofcreated at timet=0. When the wave packets reach the
a wave packet by the Bose-Hubbard model is that the bosonsoundaries, they are reflected back and after some time they
should not be excited to higher-lying energy bands inducegneet again in the center of the system. The evolution of the
by the periodic potential of the optical latti¢82]. Hence it density for up to four reflections is shown in Fig. 2 by a
is valid as long as the additional energy by the perturbation iglensity plot, i.e., the height of the density is encoded in a
much smaller than the level spacing of the energy bands. Thgray-scale scheme. The bright lines indicate the motion of
energy change induced by the perturbation consists of twehe wave packet, which splits into two packets moving to-
contributions: the change in the interaction energy and thevard the boundaries. After some time the pattern becomes
change in the kinetic energy. The first can be approximategess pronounced and a substructure arises due to the reflec-
by AEn=2pApU, with Ap~no and U=g[d*|w(X)|*,  tion and scattering of the wave packets.
wherew(x) is the associated Wannier function. The set of
Wannier functions is often used in the context of periodic
potentials, since these functions are maximally localized at
the potential minima. Hera/(x) is the Wannier function lo- Damski[14] has shown that, neglecting the last term in
calized around=0. The kinetic energy is dominated by the the Gross-Pitaevskii equatio(B8), the so-called quantum

VII. HEIGHT OF THE AMPLITUDE
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L=32, u=3, N=32, {{ =0.3, § =2 (a) L=32, u=1, N=32,1{=0.3, 5=1
50 0.35
DMRG X
0.3 XX at+b
=-0.0146 +/- 0.0003
x b=0.181 +/- 0.001
0.25 x
(0]
time i
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(S
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_:::I (b) 0 5 L=32, U=1 ) N=32, ﬁ=01 ,6=1 4
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FIG. 2. Here the evolution of a density-wave packet is shown in 0.18 1 x =-0.00231+/- 0.00007
a density plot. A linear gray scale is used, bright meaning higher x b=0.1037 +/- 0.0004
densities. The bright lines correspond to the wave packets first split- 0.16 x
ting up, moving toward the boundaries, being reflected by the 3 x
boundaries, and meeting again in the center of the system, where g 0.14 ’;
the cycle starts again. After some reflections a substructure arises g— ’ x
due to boundary effects and packet interactions. © 0.12 x
. X
pressure term, the amplitude of the perturbation stays con- X
stant in time and equals(1+7). A decay of the amplitude in 0.1
this approximation occurs when the quantum pressure term
become relevant. This term arises from the kinetic energy 0.08
term and describes a restoring force due to spatial variations 0 1 2 3 4 5 6 7
in the magnitude of the wave function of the condensate. It time t
becomes important if the length scale of spatial variations is _ ) _
of the order of the healing Iengtfpll(\@_pi, where y is FIG. 3. The typical decay of the amplitude of the perturbation.

the dimensionless interaction strength definedyssMg/p. e PIot(p)max—po, i-€., the difference between the largest discrete
Hence a decay of narrow or high wave packets is expecte te occupancy and the b_ackground oc_cupatlon. The steep decrease
even without an external potential. In agreement with thisor_sr_nalltlmes[uptot_zl in () andtzz_ in (b)] corresponds to_the_
qualitative picture, our numerical results for the Bose_spllttlng of the density-wave packet into two packets moving in
Hubbard model Sh;)W that the decay becomes faste e opposite directions. The small oscillations in the curve stem from

idth of th turbation i Y i th litud the discreteness of the underlying lattice. A linear fit is shown as a
\(’)\? theopertirrl;ilrt.igg %I%?gﬁe?aggv;ﬁr,eig?)nplee ?nmlgilgu 3ethefirst approximation. For the lower and broader amplitut¢ a

. o . ' Y much slower decay is seen than for the amplittae

decay of the amplitude is shown for different amplitude y plitta)
heights and widths. Both plots show a very rapid decrease - o
for small times[in (a) for t< 1 and in(b) for t< 2], which is ~ &nd ‘T'bby fitting the |rr]1|t|allc_w_avehpack_et =0 to the fOLm
due to the splitting of the wave packet. For larger times afte@Ven by Eq.(6). Such a fit is shown in Fig. 1 at0. The
the two wave packets are separated, the decay is approﬁ-”or that resyl_ts from assuming a tlme—lndependent ampli-
mately linear in timgthis might be just the first contribution tudenis negl!glble for small arr_1p|_|tudes and broad.W|dths of
of a more complicated dechyClearly, the decay of the am- the perturbat_lon. The uncertainties of the numerical 'results
plitude of the initially small heighty~0.1 and width& for the density(determined by convergence checks in the
~1.4[Fig. 3(b)] is much slower than the decay of the am- number of DMRG states, the allowed number of bosons
plitude of the initial height7~0.3 and widthg~1 [Fig. Ng per site,_and the Trotter time stéy), and the errors made
3(a)]. The oscillations seen in the curve stem from the dis—When reading Oﬁ. the parameters from the fit are _much
crete structure of the lattice, since we plot the maximumsma”er than the size of the_symbols used for data points in
value of the lattice occupancies over all lattice si@sd not ~ OUr Plots(see for example Fig.)1
the maximum of a fitted continuous curve which could lie
between two lattice sités

Due to the rather slow decay of small amplitudes, we To investigate the dependence of the sound velocity on
determine in the following the values to be used fgr ,  the background density, and the interaction strengthnin

VIIl. SOUND VELOCITY
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continuous bosonic modgEq. (2)] with & interaction. They
found two distinct modes of excitations, the usual Bogoliu-
bov mode and the Lieb mode, which is associated with soli-
tary waved 33]. At low momenta the dispersion relations for
both modes have the same slope, which means that they
propagate at the same sound velocity. The expression for the
sound velocity can be obtained from the thermodynamic re-
lation Mv2=pdu, with u as the chemical potential of the
ground state, which is calculated within the Bogoliubov ap-
proximation. This results if8]

\‘J'; \r; 1/2
Us:vbare;<1_z> ) (10

wherevp,e=mp/M is the analog of the bare “Fermi” ve-
locity. In order to relate that to the Bose-Hubbard model,

we use the expressions obtained from the continuum limit,
FIG. 4. The dependence of the sound velocity at constant back-€:» Y= ¥Yat @Nd Upare— Upare,la= 27Po- Within the con-

ground densityp,=0.52 on the interaction strength is shown. Our tinuum model, the numerical calculation of the sound ve-

numerical result§+) are compared t¢i) the results Eq(9) of the  locity by Lieb shows that expressida0) is quantitatively

hydrodynamical approach(ji) the sound velocity determined by correct up toy~10. By contrast the hydrodynamical re-

Lieb and Liniger Eq.(10), and(iii) the results Eq(11) for strong  sult (9) is valid only up toy=1.

interaction strength obtained by mapping onto spinless fermions. (iii) For strong interactions the sound velocity obtained

The results of Eq(11), i.e., (iii ), should become applicable for even by a mapping on a spinless fermion model is given »4]
stronger interactions than the ones shown here.

8
_ vg = vF(l - ‘(POCOSWP0)> (12)
the Bose-Hubbard model, we create two small density per- u

turbations with onv amplitudes, a "bright” One, l.ep>0, where the Fermi velocity of the lattice model ig¢
and a “gray” one, i.e.p<0 (|7 <0.02 at approximately the 2 sinmp
same background densities. Since the sound velocity is the |, Fig.0.4 we compare these predictions to our numerical
velocity for an infinitesimal density perturbation and we (o its. We see that for small interaction strengthl, i.e.
simulate the motion of perturbations with finite amplitude, yu=1 (note that forp,=0.52 andu= v,), the curvés ot;-

. . at—~ . at/s
we interpolate between the two results for the Ve'°°'t¥ of theained usingi) and(ii) agree well with our numerical results.
perturbations % Imgar_ly (this W|_II be justified later on; see  Around et~ 1 the mean-field predictiofi) starts to grow
Sec. IX)..The velocity is (_jetermmed from t.he propagation of 100 fast, while the Bogoliubov approximatiai) remains
the maximum or the minimum of the density perturbation for g6 1o the numerical results up to intermediate interaction

+7, respectively. In Fig. 4 the sound velocity is plotted as 3strengthy,,~ 4. For even higher interaction strength s

function of the interaction strength at fixed background deng, 5’1o differ significantly from our numerical results. This

Sity po=~0.52.(The background density can not be fixed eas0ans that the lattice model starts to deviate from the con-

ily tq a certain value, since it depends on the total .number Ofinuum model, sincéii) was a very good approximation for
particles, the boundary effects and the perturbation. In oUfa continuum model up ty=10. A breakdown of the con-

calculations it deviates from, at most by 0.0J. tinuum limit in this regime is expected, since the lattice ana-
_ Our nL_Jm_encaI reSL_JIts will be compgred with the theoret-|Og of the healing length, i-e§|at=a/(\*"ﬁtpo), becomes of
|_cal p_red|ct|ons fro_m(l) a hydrodynqmlcal appro_ach or the the order of the lattice spacirgand thus the discreteness of
Imeqnzet_j Gross—Pnaevsku equatidii) the Bogollu.t.)ov aP-  the lattice becomes relevafive restored here the depen-
proximation for the_ continuum gas by L|ek_), ariid) the dence on the lattice spacirg). The sound velocity in the
reSl.JltS of the mapping onto a spl_nless fermion model. . lattice model always remains lower than in the continuum
M) The_sou_nd velocity determined by a hydrOdyr“"‘m'c""lmodel. For higher interaction strength the numerical results
approach is given by approach the asymptotic value of predicti@in). Note, that
v(p,g) = VgpIM. (8) the prediqtior(iii ).is only expected to beco.me vgl!d for even
stronger interactions than shown here, since it is an expan-
Using the relations of the continuum limit, the correspondingsijon inu™.. In Fig. 5 we see that our humerical results up to
velocity in the lattice is intermediate interaction strength show the dependence on the
(po,U) = 2 [ 9) background density predicted by Ed.0). Deviations from
viPo: PoNVat: the predicted form occur foy,= 2, depending on the par-
with y,=u/2py being the lattice analog of the dimension- ticular set of parameters and p,. This dependence of the
less interaction. breakdown of the continuum lim{g,; becomes of the order
(i) As will be shown below, a much wider range of ap- of a) is due to the fact that the healing lengil; does not
plicability than(i) is obtained from the results of Lieb for the only depend orpy andu in the combination given by,
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u=1, L=32, M=64, 5=1.4
adaptive t-DMRG ¢

22ramb —
= a=0.8
= 5 b-11 ©
3 =
> B
a 3
s 2

1.5

0.2

0 1 2 3 4 5 FIG. 6. The dependence of the velocity on the height of the
Viat amplitude . The velocity is scaled by(py) to remove its depen-

dence on the background density.
FIG. 5. The dependence of the sound velocity on the interaction

strength and the background density is shown up to intermediate
interaction strength. To confirm the predictioi [Eq. (10)] we plot The results presented above were obtained using chain
the ratiov/ (2pg) Versusy=u/(2po). lengths betweer.=32 and 48 sites. Our numerical results
for the time evolution of the density profile are converged in

Therefore deviations at smaller values wofarise for larger the number of states kept in the reduced spacétaken
background densities. Alternatively, this may be expressed ihetweenm=64 and 96, which means that the Trotter error
the form shown in Fig. 5: the breakdown of the continuumdominates the total errgB81]. The errors in observables are
limit occurs for largeru at smallervy,y. very small (of the order of 0.000for Trotter time steps

To summarize, we find that the sound velocity as a funcbetweenAt=0.01 and 0.05 and can safely be neglected in
tion of the interaction strength shows a crossover betweepomparison to the uncertainties introduced by the determina-
Eqg. (10), wherevd/ p, depends only on the combinationgf  tion of the sound velocity. For small interaction strength the
andu given by vy,,, to a saturation at a value given by Eq. velocity is relatively low and the movement over a long time
(112). In fact, a completely analogous behavior appears in thean be fitted such that the accuracy of the results is of the
average kinetic energy of the particles, allowing one to idenorder of +0.01 before interpolation betweem.#or higher
tify the Tonks regime for quasi-1D tubes of bosons which areénteraction strength, the uncertainty in the results for the ve-
radially confined by a 2D optical lattice of increasing locity increasegapproximatelyO(+0.05) for u=6]. This has
strength4]. The breakdown of the prediction E{.0) is due  two reasons. First, the velocity increases such that the end of
to the discreteness of the lattice model and takes place if thifne chain is reached in a rather short time. Moreover, oscil-
healing length becomes of the order of the lattice spacing. lations in the density distribution induced by the finite size of

(a) L=48, N=48, u=1,7{=0.3,6=0.5
t=0 t=3.2 =5.
1.4 =52
>
2
g1.2
<3 54
o 1 ; ‘x x, %K 0K Wx Xm ss‘so«no&?( W’(

FIG. 7. The evolution of a narrow density-
wave packet is shown for various fixed times.
The wave packets undergo self-steepening and

0.8L X
-20 -10 0, 10 20 -20 -10 0. 10 20 -20 -10 0. 10 20
site site j site j

(b)1 5 L=48, N=48, u=1, j=-0.3,5 =1.41 assume a symmetric form. The lines are guides to
""" "71 """ " " . the eye.
% % X A % f o s&x % Rt
1t 1iE (R T L SN R T A
H i il % P i X % X ¥ i
S 0.8} woLE X i :
3
Q H
8 |
06} :
oa g -0 e t=4.8 b 1-6.8 ]
" -20 -10 0, 10 20 -20 -10 0. 10 20 -20 -10 0. 10 20
site j site site |
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the chain become more important and disturb the free evo- L=32, N=32, u=1,1=0.6,6=1.4
lution of the wave packets. 30
=5 —%—
| t=0 —+—
IX. SELF-STEEPENING 25
In Fig. 6 the dependence of the velocity on the height of 20

the initial density-perturbation amplitude is shown. The data

are taken at fixed interaction strength-1 and different = 15

background densities,. The dependence of the ve@ty on = ]

the density is taken out by dividing by(pg)v2po[1

—(1/2m)(1/v2po)1M? using our knowledge from the previous 10

results[cf. Eq. (10), with y=y,:=u/2p,, andu=1]. We see

that for small amplitudes, the dependence is approximately St

linear. It may be parametrized kgm+b wherea=0.8 and

b=1.1. This linear dependence justifies the previously ap- 0 ' ' B

0 02 04 06 038 1

plied linear interpolation betweenntfor the determination ka

of the sound velocity.

As a consequence of the fact that the velocity increases L=32, N=32, u=1, 1=0.6, 5=1.4
monotonically with the amplitude of the perturbation, the 6 : :
wave can undergo self-steepening and shock-wave formation
can occur{14,15. One example where the phenomenon of
self-steepening can be seen for a “bright” perturbation is
shown in Fig. Ta). The form of the density wave becomes
very asymmetric. The front of the wave steepens and the
back becomes more shallow. An additional dip arises at the
front of the wave packet. This might stem from the discrete-
ness of our system. In the case of a “gray” perturbaffig.
7(b)], the asymmetry develops the other way round; the front
becomes more shallow and at the same time the back of the
wave steepens. It should be emphasized, however, that the
perturbations taken here are very narrow and high to have a
strong effect. The Bose-Hubbard model might not be quan- _14 ‘ ‘ , ,
titatively applicable to describe such perturbations as dis- 0 02 04 06 038 1
cussed in Sec. V. ka

FIG. 8. On the left the interference pattern is shown for two
X. MOMENTUM DISTRIBUTION different times. Att=0 only one sharp interference peaklat0

. f . h . exists. For timeg>0 further peaks at finite momentaand «
Experimentally, one way of detecting the density pertur'arise, which correspond to the moving wave packets. Here only the

bation is to take time-of-flight imag€d8,27). Theoretically  ogionk>0 is shown, exploiting the symmetry undess—k. On
the interference pattern can be determined from the Fourighe right the difference of the interference patterntfob and 0 is
transform of the one-particle density matrix shown. Here the errors are of the order of a few percent.

L
W=1NS ei(,-_jr)ak<b;rbj,>, system. Specifi_cally, the peak shown in Fig.'8 was .calculated
for a high amplitude of the density perturbation. This ensures
that the mean number of bosons contributing to the second
neglecting its slowly varying envelopg@4]. In a homoge- peak in the interference pattern is a sufficiently large fraction
neous system without a density perturbation a sharp interfewf the total boson number. In Fig. 8 the difference between
ence peak appears at low interaction strength due to the long¢le patterns at=5 and 0 is shown.
range order in the one-particle density matrix. If the In our investigations we neglected the transverse degrees
interaction increases beyond the point where a Mottof freedom. Small corrections to the sound velocity are ex-
insulating phase is present, this peak broadens and decreasgscted by the coupling of the sound mode to these transverse
Finally, for very strong interaction only a diffuse pattern is degrees of freedorf86].
left [27,35. In the presence of a density-wave packet, we In the experimental realizations a parabolic trapping po-
find that a second interference peak appears at a finite maeential is present in addition to the periodic lattice. As a re-
mentum. In Fig. 8 we show the difference between an intersult, the background density is no longer homogeneous.
ference pattern &t=0, where the density wave is still in the Since the sound velocity depends on the background density,
center, and a later point, where the wave packets travelke expect it to vary for weak interactions according to Eq.
through the system. The possibility to resolve the secondl10) and for strong interactions according to Efl). Only
peak in the experiments depends on the parameters of tlie the region where the trap varies slowly enough that the

=1
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background density is almost constant, we expect the trap tihe velocity of the dark solitons for repulsive interactions is
have negligible effect on the motion of the wave packet. always smaller than the linear sound velocity, coinciding
with the latter only in the limit of long wavelengths. Experi-
X|. SUMMARY AND OUTLOOK mentally, dark solitons have been observed in quasi-1D
Bose-Einstein condensates, and have been identified by the
To summarize, we investigated the motion of a wavefact that their velocity depends on the imposed phase gradi-
packet in a Bose-Hubbard model which describes the dyent[11,12. In the case of a deep lattice potential, as is stud-
namics of density perturbations in ultracold bosons in aried here, solitary waves are predicted to appear in the weak-
optical lattice with a filling close to one particle per site. In coupling regimeu<1 [38] and for sufficiently wide density
the limit of weak interactiony<1, the motion of relatively perturbations which can be described by the 1D nonlinear
broad and small perturbations can be described by the hydr&chrodinger equation. In addition, the presence of a lattice
dynamical approach or the linearized Gross-Pitaevskii equasotential implies that atoms with momenta near a reciprocal
tion. For intermediate interaction strength, however, thdattice vector acquire a negative effective mass. This leads to
mean-field description breaks down while the results obthe existence of bright gap solitons, a subject of considerable
tained from the corresponding continuum Lieb-Liniger current interesi39—41], in particular in connection with in-
model remain valid in this regiméy=<4). For strong inter- stabilities for strongly driven optical latticé42]. In this pa-
actions, we found that the sound velocity is well approxi-per we focused our investigations mainly on the case of per-
mated by a mapping onto a spinless fermionic model. Irfurbations with small momenta, for which the two modes
addition, we found a linear dependence of the velocity on theannot be distinguished by their velocity. It is an open ques-
height of the amplitude. This gives rise to effects like self-tion to what extent the density waves in our simulations, can
steepening and shock-wave formation, in agreement withe interpreted as solitary waves and in particular what hap-
analytical predictions. Finally, we have shown that a densityens to these stable excitations in the regime of strong cou-
wave may be detected experimentally as an additional pegiling, where the nonlinear Schrédinger equation no longer
in the interference pattern. applies.
Let us conclude by mentioning a few open questions. In
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