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Gate-controlled spin-splitting in quantum dots with ferromagnetic leads
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The effect of a gate voltage (Vg) on the spin-splitting of an electronic level in a quantum dot
(QD) attached to ferromagnetic leads is studied in the Kondo regime using a generalized numerical
renormalization group technique. We find that the Vg-dependence of the QD level spin-splitting
strongly depends on the shape of the density of states (DOS). For one class of DOS shapes there
is nearly no Vg-dependence, for another, Vg can be used to control the magnitude and sign of the
spin-splitting, which can be interpreted as a local exchange magnetic field. We find that the spin-
splitting acquires a new type of logarithmic divergence. We give an analytical explanation for our
numerical results and explain how they arise due to spin-dependent charge fluctuations.

PACS numbers: 75.20.Hr, 72.15.Qm, 72.25.-b, 73.23.Hk

The manipulation of magnetization and spin is one
of the fundamental processes in magneto-electronics and
spintronics, providing the possibility of writing informa-
tion in a magnetic memory [1], and also because of the
possibility of classical or quantum computation using
spin. In most situations this is realized by means of an
externally applied, nonlocal magnetic field which is usu-
ally difficult to insert into an integrated circuit. Recently,
it was proposed to control the magnetic properties, such
as the Curie temperature of ferromagnetic semiconduc-
tors, by means of an electric field: In gated structures
[2], due to the modification of carrier-density-mediated
magnetic interactions, such properties can be modified
by a gate voltage. In this Letter we propose to control
the amplitude and sign of the spin-splitting of a quantum
dot (QD) induced by the presence of ferromagnetic leads,
only by using a gate voltage without further assistance of
a magnetic field. To illustrate this effect we investigate
the Kondo effect and its spin-splitting as a very sensitive
probe of the spin state of the dot and the effective local
magnetic field in the QD generated by exchange interac-
tion with the ferromagnetic leads.

Recently, the possibility of the Kondo effect in a QD at-
tached to ferromagnetic electrodes was widely discussed
[3, 4, 5, 6, 7, 8, 9], and it was shown, that the Kondo
resonance is split and suppressed in the presence of fer-
romagnetic leads [7, 8]. It was shown that this splitting
can be compensated by an appropriately tuned external
magnetic field, and the Kondo effect is thereby restored
[7, 8]. In all previous studies of QDs attached to ferro-
magnetic leads [3, 4, 5, 6, 7, 8, 9] an idealized, flat, spin-
independent DOS with spin-dependent tunneling ampli-
tudes was considered. However, since the spin-splitting

arises from renormalization effects i.e. is a many-body ef-
fect, it depends on the full DOS-structure of the involved
material, and not only on its value at the Fermi sur-
face. In realistic ferromagnetic systems, the DOS shape
is strongly asymmetric due to the Stoner splitting and
the different hybridization between the electronic bands
[1].

In this Letter we demonstrate that the gate voltage de-
pendence of the spin-splitting of a QD level, resulting in a
splitting and suppression of the Kondo resonance, is de-
termined by the DOS structure and can lead to crucially
different behaviours. We apply the numerical renormal-
ization group (NRG) technique extended to handle bands
of arbitrary shape. For one class of DOS-shapes, we find
almost no Vg-dependence of the spin-splitting, while for
another class the induced spin-splitting, which can be in-
terpreted as the effect of a local exchange field, can be
controlled by Vg. The spin-splitting can be fully compen-
sated and its direction can even be reversed within this
class. We explain the physical mechanism that leads to
this behavior, which is related to the compensation of the
renormalization of the spin-dependent QD levels induced
by the electron-like and hole-like quantum charge fluc-
tuations. Moreover we find that for the QD level close
to the Fermi surface, the amplitude of the spin-splitting
has a logarithmic divergence, indicating the many-body
character of this phenomenon.

Model and method. – The Anderson model (AM) of a
single level QD with energy ǫ0 and Coulomb interaction
U , coupled to ferromagnetic leads, is given by

H =
∑

rkσ

ǫrkσc†rkσcrkσ + ǫ0
∑

σ

n̂σ + Un̂↑n̂↓
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+
∑

rkσ

(Vrkd†σcrkσ + h.c.) − BSz . (1)

Here crkσ and dσ (n̂σ = d†σdσ) are Fermi operators for
electrons with momentum k and spin σ in the leads
(r = L/R), and in the QD, Vrk is the tunneling am-
plitude, Sz = (n̂↑ − n̂↓)/2, and the last term denotes the
Zeeman energy of the dot. The energy ǫ0 is experimen-
tally controllable by Vg (ǫ0 ≃ Vg).

In order to discuss the gate voltage dependence of the
QD level spin-splitting, we consider here a more real-
istic, both energy and spin dependent band structure
[ρr↑(ω) 6= ρr↓(ω)], violating p-h symmetry ρrσ(ω) 6=
ρrσ(−ω), which leads to an energy dependent hybridiza-
tion function Γrσ(ω) = π

∑

k δ(ω−ǫkσ)V 2
rk = πρrσ(ω)V 2

0 ,
where we take Vrk = Vr to be constant. We apply the
NRG method [10, 11] extended to handle arbitrary DOS
shapes and asymmetry. To this end, the standard log-
arithmic discretization of the conduction band is per-
formed for each spin component separately, with the
bandwidths, D↑ = D↓ = D0, chosen such that the to-
tal spectral weight is included in [−D0, D0] for all values
of Vg studied here (to avoid different systematic errors
upon changing Vg).

Within each interval [−ωn,−ωn+1] and [ωn+1, ωn]
(with ωn = D0Λ

−n) of the logarithmically discretized
conduction band (CB) the operators of the continuous
CB are expressed in terms of a Fourier series. Even
though we allow for a non-constant conduction electron
DOS, it is still possible to transform the Hamiltonian
such that the impurity couples only to the zeroth order
component of the Fourier expansion of each interval [12].
Dropping the non-constant Fourier-components of each
interval [10, 11] then results in a discretized version of
the Anderson model with the continous spectrum in each
interval replaced by a single fermionic degree of freedom
(independently for both spin directions). Since we allow
for an arbitrary DOS for each spin component σ (↑, ↓) of
the CB this mapping needs to be performed for each σ
separately. This leads to the Hamiltonian:

H =
∑

σ

ǫσn̂σ + Un̂↑n̂↓ +
√

ξ0σ/π
∑

σ

[d†σf0σ + f †
0σdσ]

+

∞
∑

σn=0

[εnσf †
nσfnσ + tnσ(f †

nσfn+1σ + f †
n+1σfnσ)] , (2)

where fnσ are fermionic operators at the nth site of the

Wilson chain, ξ0σ = 1/2
∫ +D0

−D0

Γσ(ω)dω, tnσ denotes the
hopping matrix elements, and ǫσ = ǫ0 − BSz. The ab-
sence of particle-hole symmetry leads to the appearance
of non-zero on-site energies, εnσ along the chain. In this
general case no closed expression for the matrix elements
tnσ and εnσ, both depending on the particular structure
of the DOS via Γσ(ω), is known, therefore they have to
be determined recursively. This requires rather advanced
numerical methods, due to the exponentially fast decay
of tnσ and εnσ along the chain [13].
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FIG. 1: (color online). Vg-dependence of the spin-splitting:

Normalized spectral function π
∑

σ
Γσ(0)Aσ(ω) as a function

of energy ω and gate voltage ǫ0, for the three different DOS
shapes (depicted in insets) characterized by a different Q,
which modifies both the spin and p-h asymmetry: (a-c) for
magnetic filed B = 0, (d) B/U = 0.017, (e), and (f) B/U =
0.0083. The white dashed lines are obtained using Eq. (3).
Here U = 0.12D0, πV 2

0 = UD/6, ∆ = 0.15D and T = 0.
Inset: the scheme of the parabolic DOS shape for spin ↑ (red)
and ↓ (blue).

This method allows one to calculate the level occu-
pation nσ ≡ 〈n̂σ〉 and the spin-resolved single-particle
spectral density Aσ(ω) = − 1

π ImGr
σ(ω), where Gr

σ(ω) de-
notes a retarded Green’s function. For symmetric cou-
pling [ΓLσ(ω) = ΓRσ(ω)] the spin-resolved conductance

takes the form Gσ = π e2

h

∫ +∞
−∞ dωΓσ(ω)Aσ(ω)(−∂f(ω)

∂ω )
where f(ω) is the Fermi function.

Spectral function and conductance. – Here, we fo-
cus our attention on T = 0 properties. We have an-
alyzed several types of DOS shapes and found three
typical classes of the Vg-dependence of the Kondo res-
onance splitting. Since our method enables us to per-
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form NRG calculations for arbitrary band-shapes, we de-
cide to choose an example which turns out to encom-

pass all three classes, namely ρσ(ω) = 1
2

3
√

2
8 D−3/2(1 +

σQ)
√

ω + D + σ∆, where ω ∈ [−D − σ∆, D − σ∆],
D0 = D + ∆, [σ ≡ 1(−1) for ↑ (↓)], a square-root shape
DOS equivalent to a parabolic band (as for free elec-
trons) with Stoner splitting ∆ [14], and some additional
spin asymmetry Q, which modifies the amplitude of the
DOS [see Fig. 1(insets)].

In Fig. 1 we present the weighted spectral function
Ã(ω) ≡ πe2/h

∑

σ Γσ(0)Aσ(ω), normalized such that for

ω = 0 it corresponds to the linear conductance G = Ã(0),
as a function of energy ω and ǫ0. We focus on a nar-
row energy window around the Fermi surface where the
Kondo resonance appears; charge resonances are visible
when ǫ0 or U + ǫ0 approach the Fermi surface, namely
at energies ǫ0/U >∼ −0.1 or <∼ −0.9. Although the NRG
method is designed to calculate equilibrium transport,
one can still roughly deduce, from the spin-splitting of
the Kondo resonance of the equilibrium spectral function
Ã(ω), the splitting of the zero-bias anomaly ∆V in the
non-equilibrium conductance G(V ), since e∆V ∼ 2∆ǫ [7]
(∆ǫ ≡ ǫ̃↑ − ǫ̃↓ is the splitting of the renormalized levels).

We present Ã(ω) for three DOS shapes depicted in the
insets of Fig. 1: (i) Q = 0 (a,d), (ii) Q = 0.1 (b,e),
and (iii) Q = 0.3 (c,f), with 2∆ = 0.3D [15], leading to
the three typical behaviors. Here the parameter Q tunes
the spin and p-h asymmetry [see the definition of ρσ(ω)]
resulting in different behaviours (for a detailed discus-
sion see the last section). For (i) we find nearly any
ǫ0-dependence of the spin-splitting; for (ii), a strong ǫ0-
dependence without compensation of the spin-splitting
(i.e. no crossing), and for (iii) a strong ǫ0-dependence
with a compensation (i.e. a crossing) and a change of
the direction of the QD magnetization. The compen-
sation (crossing) corresponds to the very peculiar situa-
tion where the Kondo effect (strong coupling fixed point)
can be recovered in the presence of ferromagnetic leads
without any external magnetic field. A behavior as pre-
sented in Fig. 1(a,b) was recently observed experimen-
tally [16, 17], where indeed a variation of the gate voltage
results in two split conduction lines G(V, Vg) which are
parallel for one case and converging for the other case,
similar to our findings.

Effect of a magnetic field. – In Fig. 1(d,e,f) we
show how a magnetic field B modifies the results of
Fig. 1(a,b,c): in (i) the spin splitting can be compensated
at a particular magnetic field Bcomp (here Bcomp/U =
0.017) and the Kondo effect is visible in a wide range
of ǫ0; for (ii), at B/U = 0.0083, the Kondo effect is re-
covered only at one particular ǫ0-value, which depends
on the applied magnetic field; case (iii) shows that the
crossing point shifts with B. Since Bcomp can be viewed
as a measure of the zero-field splitting, ∆ǫ(B = 0, ǫ0) ≃
−Bcomp(ǫ0), the ǫ0-dependence of ∆ǫ can be measured
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FIG. 2: (color online). The QD’s linear conductance G as
a function of gate voltage ǫ0 and external magnetic field B
for the DOS shapes (a), (b), and (c) as for Fig. 1(a), (b),
and (c) respectively. (d) Spin-dependent occupancy nσ of
the dot level as a function of gate voltage ǫ0 for the DOS
shape as in Fig. 1(c) and B = 0. (d) The ǫ0-dependence of
the total occupancy of the dot n and magnetization m for
the situation from Fig. 1(c). (e) The conductance G for the
situations from Fig. 1(c - dashed), (d - solid), and (f - long
dashed). Parameters U , Γ, and T as in Fig. 1.

by studying that of Bcomp, for which one needs to mea-
sure the linear conductance G(ǫ0, B) as a function of
both B and ǫ0. In Fig. 2(a-c) we plot G(ǫ0, B) for the
three bands of Fig. 1. The two horizontal ridges (res-
onances) in Fig. 2(a-c) correspond to quantum charge
fluctuations (broadened QD level) of width ∼ Γ. The
lines with finite slope in Fig. 2(a-c) reflect the restored
Kondo resonance and hence map out the ǫ0-dependence
of Bcomp(ǫ0) = −∆ǫ(ǫ0) when the magnetic field compen-
sates the spin-splitting. Interestingly the spin-splitting
and the corresponding Bcomp tend to diverge (|∆ǫ| → ∞)
when approaching the charging resonance, as is best vis-
ible in Fig. 2(c).

Such a finite slope in G(ǫ0, B) was observed for a
singlet-triplet transition Kondo effect in a two level QD
(Fig.2(d) Ref. [18]). The corresponding transition leads
to a characteristic maximum in the valley between two
charging resonances (Fig.3(c) Ref. [18]), similarly as in
our Fig. 2(e). In that system the effective spin asymme-
try (assumed by our model) is realized by the asymmetry
in the coupling of two QD levels [19].

In Fig. 2(d) we show how the occupation nσ and the
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magnetic moment (spin) of the QD m = n↑−n↓ = 2〈Sz〉
change as a function of ǫ0 for the situation of Fig. 1(c).
One finds that even though B = 0, it is possible to con-
trol the level spin-splitting of the QD, i.e. its spin, and
thereby change the average spin direction of the QD from
the parallel to anti-parallel alignment w.r.t. the lead’s
magnetization. This opens the possibility of controlling
the QD’s spin state by means of a gate voltage without
further need of an external magnetic field, which is diffi-
cult to apply locally in practical devices.

Perturbative analysis. – One can understand the be-
havior presented in Fig. 1(a-c) by using Haldane’s scal-
ing method [20], where charge fluctuations are integrated
out. This leads to a spin-dependent renormalization of
the QD’s level position ǫ̃σ and a level broadening Γσ. In
contrast to Ref. [7] we consider here the case of finite
Coulomb interactions U < ∞, which means that also the
doubly occupied state |2〉 is of importance. The spin-
splitting is then given by ∆ǫ ≡ δǫ↑ − δǫ↓ + B, where

δǫσ ≃ − 1

π

∫

dω

{

Γσ(ω)[1 − f(ω)]

ω − ǫσ
+

Γ−σ(ω)f(ω)

ǫ−σ + U − ω

}

.(3)

The first term in the curly brackets corresponds to
electron-like processes, namely charge fluctuations be-
tween a single occupied state |σ〉 and the empty |0〉 one,
and the second term to hole-like processes, namely charge
fluctuations between the states |σ〉 and |2〉. The ampli-
tude of the charge fluctuations is proportional to Γ, which
for Γ ≫T determines the width of QD’s levels. Eq. (3)
shows that ∆ǫ depends on the shape of Γσ(ω) for all ω,
not only on its value at the Fermi surface. The dashed
lines in Fig. 1(a-c) show ±∆ǫ as a function of ǫ0 [from
Eq. (3)] for the same set of parameters as in the NRG
calculation, and are in good agreement with the posi-
tion of the (split) Kondo resonances observed in the lat-
ter. Eq. (3) shows that the dramatic changes observed
in Fig. 1 upon changing Q are due to the modification of
the p-h and spin asymmetry.

Eq. (3) predicts that even for systems with spin-
asymmetric bands Γ↑(ω) 6= Γ↓(ω), the integral can give
∆ǫ = 0, which corresponds to a situation where the
renormalization of ǫσ due to electron-like processes are
compensated by hole-like processes. An example is a sys-
tem consisting of p-h symmetric bands, Γσ(ω) = Γσ(−ω),
for which there is no splitting of the Kondo resonance
(∆ǫ = 0) for the symmetric point, ǫ0 = −U/2. For
real systems p-h symmetric bands cannot be assumed,
however the compensation ∆ǫ = 0 is still possible, as in
Fig. 1(c). Eq. (3) also shows that the characteristic en-
ergy scale of the spin-splitting is given by Γ rather than
by the Stoner splitting ∆ (∆ ≫ Γ), since the states far
from the Fermi surface enter Eq. (3) only with a logarith-
mic weight. However, the Stoner splitting introduces a
strong p-h asymmetry, so it can influence the character
of gate voltage dependence significantly.

For a flat band Γσ(ω) = Γσ, Eq. (3) can be inte-
grated analytically. For D0 ≫ U , |ε0| one finds: ∆ǫ ≃
(P Γ/π) Re[ φ(ǫ0)−φ(U + ǫ0) ], where P ≡ (Γ↑−Γ↓)/Γ,
φ(x) ≡ Ψ(1

2 + i x
2πT ), and Ψ(x) denotes the digamma

function. For T = 0, the spin-splitting is given by

∆ǫ ≃ (P Γ /π) ln(|ǫ0|/|U + ǫ0|) , (4)

showing a logarithmic divergence for ǫ0 → 0 or U + ǫ0 →
0. Since any sufficiently smooth DOS can be linearized
around the Fermi surface, this logarithmic divergence oc-
curs quite universally, as can be observed in log-linear
versions (not shown) of Fig. 2(a-c). For finite tempera-
ture (T > 0) the logarithmic divergence for ǫ0 → 0 or
ǫ0 → −U is cut off, ∆ǫ ≃ − 1

π PΓ[Ψ(1
2 ) + ln 2πT

U ], which
is also important for temperatures T ≪ TK.

In conclusion, we demonstrated, using the extended
NRG technique for general band shapes, the possibility
of controlling the local exchange field and thereby the
spin-splitting in a QD attached to ferromagnetic leads by
means of the gate voltage. A new type of the logarithmic
divergence of the QD’s level spin-splitting was found, and
attributed to spin-dependent charge fluctuations.
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