
Science through symmetry
A partnership of researchers based at Ludwig Maximilian University of 
Munich, Germany, is combining computational physics and nontrivial 
mathematics to solve some of quantum physics’ most challenging models

Nanophysicist Professor Jan von Delft shares details of his career in quantum nanoscience, 
and the computational cost-saving approaches he has helped devise in this important area

What sparked your curiosity in quantum 
mechanics?

As a high school student, I read somewhere 
that Heisenberg’s uncertainty principle 
implies that the notion of causality has 

to be revised. The quantum mechanical 
uncertainty principle states that it is not 
possible to simultaneously know the position 
and momentum of a particle with certainty, 
implying that its future trajectory cannot be 
predicted with certainty either. This intrigued 
me to such an extent that I decided to study 
physics, and in these studies I continued 
to find myself attracted to phenomena 
involving quantum mechanics.

Could you briefly outline your project 
on the exploitation of non-abelian 
symmetries for the numerical treatment 
of two-dimensional (2D) quantum lattice 
models using tensor networks?

Many quantum lattice models have some 
kind of symmetry, meaning that the energy 
of the system does not change under 
certain symmetry operations. Examples 
would be rotating the spin on every lattice 
site by the same angle – a so-called SU(2) 
symmetry – or, for models with N bands, 
mixing particles from different bands in 

the same way on every lattice site – a so-
called SU(N) symmetry. 

If a quantum system has a symmetry, the 
allowed quantum states can be 
organised into sets that 
all have the same 
energy – each 
set is called a 

Enthralled by symmetries

QUANTUM MECHANICS IS the field of 
physics that deals with interactions on the 
smallest scale known to man – which is very 
small indeed. For example, the action of lifting 
a 1 kg weight one metre off the ground would 
cost around 10 joules of energy; quantum 
mechanics works in terms of Planck’s constant, 
the smallest measurable unit of action, which 
is roughly 6.626 x 10-34 Js-1. Because of this 
incomprehensible difference in scale, the 
laws of physics also differ; uncertainty plays a 
significant role in quantum interactions, and 
the distinction between matter and waves is no 
longer clear. When scientists attempt to study 
quantum mechanics, therefore, calculations of 
vast complexity are required.

In fact, some of these interactions are so complex 
as to be functionally incalculable. A system of 
particles of the sort commonly occurring in 

nature may contain 1020 particles, which all 
behave in a way influenced by the behavior 
of all the others; this is too much information 
to process. In order to effectively study such 
systems, limited models often operating in one 
or two dimensions are necessary, and even here 
shortcuts are needed to save calculation time. 
Quantum lattice models represent interactions 
on a lattice or grid. Each site on the grid can 
be occupied by a particle such as an electron. 
In order to facilitate calculations solving these 
models, scientists exploit symmetries – many 
lattice models have symmetries that can be 
utilised to speed up calculations and reduce 
memory requirements. 

THE 2D CHALLENGE

Interacting quantum lattice models attract a lot of 
interest from scientists, but solving them reliably 

is extremely difficult. 
In fact, the successful 
numerical treatment of two 
dimensional (2D) lattice models is considered 
to be a ‘Holy Grail’ of computational physics. 
One of the most sophisticated approaches 
proposed to date involves tensor networks; 
these have great potential but their numerical 
cost increases exponentially with size in 2D 
systems. This is a significant problem, because if 
a system is too small then it will be unreliable for 
the prediction of bulk properties. It is possible, 
however, that sufficient shortcuts could be made 
to dramatically increase the efficiency of tensor 
network methods to the extent that reliable 
predictions for low-temperature properties could 
become possible for significantly larger systems.
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degenerate symmetry multiplet. This offers 
the enthralling possibility of making numerical 
calculations vastly more efficient, by only 
keeping track of entire multiplets instead of 
individual states. My co-worker, Dr Andreas 
Weichselbaum, got this to work for 1D chain 
models with non-abelian symmetry groups, 
and the efficiency gains were amazing. Thus, 
our next goal is to implement this strategy 
for 2D quantum lattice models, treated using 
tensor product methods.

How could your research be translated for 
application to models of general interest?

For many years, Andreas 
and I have worked on 

quantum impurity 
models, which 

describe a 
discrete 

quantum system coupled to a continuum 
of excitations. While these models have 
numerous applications in our research field of 
nanophysics, the numerical methods that have 
been developed to treat them have potentially 
even greater applicability. One possibility 
is via 2D tensor network treatments of 2D 
lattice models; another is within the context 
of dynamical mean field theory (DMFT), which 
describes a correlated lattice system in terms 
of an effective quantum impurity model that 
has to be solved self-consistently. I believe 
that DMFT-related work, too, will greatly 
benefit from the symmetry gold mine.

What have been the biggest obstacles you 
have faced to date? How have you sought 
to overcome them? 

On a conceptual level, getting to grips with 
SU(N) and its mathematical representation 
theory certainly was a challenge to me, 
but the skill and dedication of student 
Arne Alex and patient guidance from our 
mathematics colleagues, Professors Alan 
Huckleberry from Ruhr University Bochum 
and Peter Littelmann from the University of 
Cologne, got us over that hump. The biggest 
challenge was certainly finding an efficient, 
user-friendly scheme for implementing 
symmetries in the numerical codes of the 
numerical renormalisation group and the 
density matrix renormalisation group. Andreas 
conquered this all by himself, by devising a 
unifying tensor representation for quantum 

symmetry spaces, which he dubbed QSpace. 
It hides most of the complications that arise 
when implementing symmetries in a cleverly 
designed tensor library of subroutines, so 
that end users of the code hardly need to 
worry about them. This works so well that 
once Andreas had his code up and running 
for SU(3), he was able to get it to work for 
a problem involving a different non-abelian 
symmetry, called Sp(6), in just a matter of 
days – which I found truly amazing. 

Will you be presenting your findings at 
any upcoming events or conferences? Is 
dissemination something you regard 
as important?

Dissemination is essential. Our work on 
Clebsch-Gordan coefficients was published a 
few years ago, and so was Andreas’ QSpace 
approach. Moreover, I am delighted that 
Andreas has recently accepted an invitation 
to write a Springer Brief about his work on 
tensor networks and symmetries. I myself 
advertise the benefits of the symmetry gold 
mine whenever I report on a physics project 
conducted in our group using Andreas’ new 
code. However, I mostly treat the code as a 
‘black box’, inviting the audience to ask about 
it afterwards, if interested. The technical 
details are better suited for one-on-one 
discussions between consenting adults behind 
closed doors. They would certainly also be a 
very suitable topic for an extended series of 
lectures in a summer school.

This is exactly the 
possibility being explored 

by a group of physicists at the 
Arnold Sommerfeld Center for Theoretical 

Physics in the Ludwig Maximilian University 
of Munich (LMU), Germany. The researchers 
are in the process of exploiting symmetries 
in the treatment of quantum lattice models 
with general non-abelian symmetry groups, 
a process that may dramatically reduce 
calculation times in 2D models. In the 
last three years, they have succeeded in 
developing shortcuts in the solution of 1D 
quantum chain models involving N equivalent 
types of particles and hence having an N-fold 
symmetry, called SU(N). This generalises 
existing approaches which utilise the much 

simpler structure of SU(2) only. Results have 
shown that for N = 3 the gain in efficiency 
from doing so is enormous. Calculations 
that previously took weeks can now be 
completed in a matter of hours, and new 
calculations that would previously have been 
impossible are now accessible. Professor Jan 
von Delft, one of the project’s three principle 
investigators, adds: “Symmetry is a gold mine 
for enhancing efficiency”. Thus, the idea arose 
to similarly exploit symmetries in studies of 
2D lattice models.

MERGING METHODS

To this end, von Delft initiated a collaboration 
with two Munich colleagues, Dr Andreas 
Weichselbaum and Professor Ulrich 
Schollwöck. Their methods originate in the 
numerical treatment of 1D quantum chain 
models using matrix product states, or 
tensor trains. von Delft and Weichselbaum 
have specialised in one numerical approach 
within this category, using the numerical 
renormalisation group (NRG) to treat a 
certain type of 1D quantum chain associated 

with quantum impurity models. Schollwöck 
also studies 1D chain models, but specialises 
in using the density matrix renormalisation 
group (DMRG) for this purpose. 

In 2005, the Munich researchers realised that 
NRG and DMRG share the same mathematical 
structure – both are based on matrix product 
states, which represent quantum states in 
terms of products of matrices. This important 
discovery uncovered numerous opportunities 
for merging advantages of both methods and 
formed the basis for a powerful NRG-DMRG 
hybrid code developed by Weichselbaum. 
In particular, he recently devised a way to 
implement SU(N) symmetries for general N 
explicitly in his code. Meanwhile, Schollwöck 
had branched out to study 2D models, using 
both SU(2)-based DMRG and more general 
2D tensor networks, which are the natural 
generalisations of 1D matrix product states to 
two dimensions. Since all these methods have 
a related mathematical structure, von Delft 
suggested a collaboration aiming to apply 
Weichselbaum’s treatment of symmetries in 
1D chains to 2D tensor networks.  
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Calculations that 

previously took weeks 

can now be completed 

in a matter of hours, and 

new calculations that 

would previously have 

been impossible are now 

accessible

NON-ABELIAN SYMMETRIES 
IN TENSOR NETWORKS

OBJECTIVES

To exploit non-abelian symmetries for the 
numerical treatment of strongly interacting 
quantum lattice models in two dimensions 
using tensor networks.

KEY TEAM MEMBERS

Dr Andreas Weichselbaum, Arnold-
Sommerfeld Zentrum and Center for 
NanoScience, Ludwig-Maximilians-
Universität, Munich, Germany

Professor Ulrich Schollwöck, Arnold-
Sommerfeld Zentrum and Center for 
NanoScience, Ludwig-Maximilians-
Universität, Munich, Germany

Professor Peter Littelmann, 
Mathematisches Institut, Universität zu 
Köln, Germany

Professor Alan Huckleberry, Institut 
für Mathematik, Ruhr-Universität 
Bochum, Germany

FUNDING

German Research Foundation (DFG)

CONTACT

Professor Jan von Delft 
Co-Principal Investigator 
Chair of Theoretical Solid State Physics

Arnold-Sommerfeld Zentrum and Center for 
NanoScience 
Ludwig-Maximilians-Universität 
Theresienstraße 37 
80333 München 
Germany

T +49 89 2180 4527 
E vondelft@lmu.de

http://homepages.physik.uni-muenchen.
de/~vondelft/

PROFESSOR JAN VON DELFT received his 
PhD in Physics from Cornell University, USA, 
in 1995. He then earned his Habilitation 
from the University of Karlsruhe in 2000. In 
the same year, he briefly joined the ranks of 
the Physikalisches Institut at the University 
of Bonn, before moving to the Arnold 
Sommerfeld Center for Theoretical Physics in 
the Ludwig Maximilian University of Munich, 
where he remains today. 

 

BEAUTIFUL BOTTLENECKS

Several years into the project, the researchers 
are now finding that their successes in exploiting 
symmetries are uncovering further challenges. 
By tracking symmetry multiplets rather than 
individual states, Weichselbaum circumvented 
the formerly most severe computational 
bottleneck, which stemmed from limits on 
the size of the matrices comprising the matrix 
product states that could be dealt with. This 
advance led to the emergence of a different, 
mathematically very interesting bottleneck, 
involving the treatment of Clebsch-Gordan 
coefficients (CGCs). 

von Delft describes CGCs as the ‘glue’ of 
symmetry-based approaches, and indeed 
they are essential to the process of obtaining 
symmetry multiplets for larger systems. 
CGCs are determined by purely mathematical 
considerations, and an essential first step 
for the Munich researchers, performed in 
collaboration with mathematicians from 
Bochum and Cologne, was to develop a 
numerical algorithm computing general 
tables of CGCs. However, the time required 
to calculate CGCs, and to combine them in 
the ways needed for NRG-DMRG algorithms, 
increases exponentially with the complexity 

of the symmetry. At present, this constitutes 
the computational bottleneck for large N – 
with beautiful opportunities for making further 
progress via pure mathematics. It turns out 
that one actually needs only particular sums of 
products of CGCs, so-called 6-j symbols, which 
have well-defined mathematical properties 
of their own. The Munich researchers have 
ambitious plans to refine their algorithm 
to directly calculate and tabulate only the 
required 6-j symbols rather than the individual 
CGCs, which promises further huge savings in 
calculation time.

As time advances, quantum modelling 
becomes less abstract and more relevant 
to our daily lives. Successive generations of 
computers shrink motherboard components 
including processing units to ever smaller sizes, 
calling for a closer understanding of physics on 
a smaller scale which, in turn, involves more 
complex computations and more powerful 
algorithms and computers. The Munich team, 
therefore, not only contributes to quantum 
physics through computational research, but 
also to the future of computation – and by 
developing systems that reduce computational 
bottlenecks, they help scientists to stay one 
step ahead in the continuous cycle of increasing 
knowledge and innovation.
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