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2Dahlem Center for Complex Quantum Systems and Institut für Theoretische Physik, FU Berlin, D-14195 Berlin, Germany

3Arnold Sommerfeld Center for Theoretical Physics and Center for NanoScience, LMU München, D-80333 München, Germany
4Department of Electrical Engineering, Princeton University, Princeton, New Jersey 08544, USA

5Department of Physics, Yale University, 217 Prospect Street, New Haven, Connecticut 06520, USA
(Received 28 November 2012; published 10 October 2013)

Spin exchange between a single-electron charged quantum dot and itinerant electrons leads to an

emergence of Kondo correlations. When the quantum dot is driven resonantly by weak laser light, the

resulting emission spectrum allows for a direct probe of these correlations. In the opposite limit of

vanishing exchange interaction and strong laser drive, the quantum dot exhibits coherent oscillations

between the single-spin and optically excited states. Here, we show that the interplay between strong

exchange and nonperturbative laser coupling leads to the formation of a new nonequilibrium quantum-

correlated state, characterized by the emergence of a laser-induced secondary spin screening cloud, and

examine the implications for the emission spectrum.
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Introduction.—Exchange interactions between a singly
occupied quantum dot (QD) and a fermionic bath (FB) of
itinerant electrons in the bulk lead to the formation of a
Kondo state jKi [1–3]. When this many-body ground state
is coupled by a laser field of vanishingly small Rabi
frequency � to an optically excited trion state jTi with
an additional QD electron-hole pair [see Fig. 1(a)], the
resulting emission spectrum at low FB temperatures T is
highly asymmetric [4,5]. Within the energy range defined
by Kondo temperature TK � T, the spectral line shape is
characterized by a power-law singularity. Anderson
orthogonality (AO) determines the corresponding nonin-
teger exponent and precludes any coherent light scattering
in this limit. In the opposite limit of large� and vanishing
exchange interaction (TK ! 0), the emission spectrum
consists of a Mollow triplet and an additional �-function
peak [6–8]. While the latter stems from coherent Rayleigh
scattering, the Mollow triplet originates from incoherent
transitions between dressed states which are superpositions
of the original excited trion and the singly charged ground
states.

In this Letter, we analyze the interplay between strong
exchange and nonperturbative laser couplings. By using a
combination of numerical and analytical techniques, we
find that the emission line shape for T � � � TK differs
drastically from both the above limits. We demonstrate the
emergence of a new quantum-correlated many-body state,
which is a laser-induced, coherent superposition of the
Kondo singlet state jKi and the trionic state jTi [see
Fig. 1(a)]. The Kondo state involves a spin 1=2 on the
dot, screened by a spin cloud in the FB which is formed
within distance / 1=TK from the dot, while the FB is trivial
in the bare trion state. The new quantum-correlated state is

FIG. 1 (color online). (a) Competition between tunnel and laser
coupling on the QD. While tunnel coupling favors a Kondo
singlet state correlated with the FB, laser coupling favors dressed
QD states. The characteristic energy scales are the Kondo tem-
perature TK and Rabi frequency �, respectively. (b) Schematic
plots of emission spectra Sð�Þ from the Rabi-Kondo model
Eq. (1) for �E ¼ 0 and three characteristic choices for �=TK.
For� ¼ 0, Sð�Þ shows a power-law divergence (left-hand panel).
With increasing laser intensity (� � 0, other two panels) it
transforms to a � peak at � ¼ 0 (thick arrows) and a broad
maximum at the (renormalized) Rabi frequency. (c),(d) NRG
results with power-law asymptotes denoted as dashed lines:
Log-log plot of the broad emission peak [Sð� < 0Þ] (c), its
position j�maxj (dots) and the �-peak weight (circles) vs �=TK

(d). We have confirmed similar results for the nonsymmetric case
"e � �U=2 and U � Ue-h as long as ne" þ ne# � nh ’ 1.
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associated with the formation of an additional ‘‘second-
ary’’ screening cloud at larger distances that compensates
for the differences in local occupancies between jKi and
jTi. The secondary screening process is also of the Kondo
type, and sets in below a secondary Kondo temperature, the

renormalized Rabi frequency�� / �4=3. This new energy
scale manifests itself in the location of a broad peak in the
emission spectrum. The peak’s red and blue tails follow
power-law functions corresponding to the primary and
secondary Kondo correlations, respectively. The emer-
gence of the secondary screening cloud coincides with
the recovery of the �-function peak in the emission spec-

trum, with weight scaling as�2=3. Measuring these effects
should be possible in a setting similar to the one recently
employed in Ref. [5]. There the effects of Kondo correla-
tions on the absorption spectrum of self-assembled QDs
were measured in the limit �< T, and the ability to
resolve spectral features at T < TK was demonstrated.
Starting from this system one would need to increase the
laser power to reach �> T while measuring the resulting
resonance fluorescence spectrum, or, alternatively, employ
a continuous-wave laser pump-probe setup.

Model.—We consider a self-assembled QD in a semi-
conductor heterostructure, tunnel coupled to a FB. We
assume laser light propagating along the heterostructure
growth direction with right-handed circular polarization
�L ¼ þ1 and a frequency !L close to the QD trion (X�)
resonance. We model the system by an excitonic Anderson
model [4,9] augmented by a nonperturbative laser-QD
interaction in the rotating wave approximation. We set @ ¼
kB ¼ 1 and assume zero magnetic field. Optical selection
rules imply that only the spin-down valence electron state
will be optically excited, leading to the generation of a
trion state involving a spin-up hole [Fig. 1(a)]. The sponta-
neous emission rate �SE is assumed to be negligibly small
compared to all other energy scales. In the rotating frame,
the Hamiltonian, to be called the ‘‘Rabi-Kondo model,’’
thus reads

H ¼ X
�

ð"e �Ue-hn̂hÞn̂e� þUn̂e"n̂e# þ ð"h �!LÞn̂h

þX
k�

"k�c
y
k�ck� þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�=ð��Þ

q X
k�

ðey�ck� þ H:c:Þ

þ�ey# h
y
* þ H:c: (1)

The first line defines the QD Hamiltonian, where n̂e� ¼
ey�e�, n̂h ¼ hy*h*, while e

y
� and hy* are, respectively, crea-

tion operators for QD spin-� electrons (� ¼" , # or �1)
and spin-up holes, "e and "h being the corresponding
energies. We account for intradot Coulomb interaction by
Ue-h > 0 and U > 0. To ensure a separated low-energy
subspace formed by the states in Fig. 1(a), the laser detun-
ing from the bare QD transition, �L ¼ !L � "e �U�
"h þ 2Ue-h, has to be small in the sense defined below.

The second line of Eq. (1) models a noninteracting con-
duction band (the FB) of energies "k� 2 ½�D0; D0�, with
"F ¼ 0 and constant density of states � � 1=ð2D0Þ per
spin, tunnel coupled to the QD’s e level, giving it a width
�. We assume T � � � U ’ Ue-h � D0 � "h;!L and
investigate a situation where the QD carries one negative
charge on average, ne" þ ne# � nh ’ 1 [10]. The QD-laser

coupling of strength � [last term of Eq. (1)] connects the
trion and Kondo subspaces, with projectors PT ¼ n̂h or
PK ¼ 1� n̂h. When � ¼ 0, these subspaces have hole
and e-level occupancies nTh ¼ 1 and nTe� ’ 1 or nKh ¼ 0
and nKe� ’ 1=2, respectively, and ground states jTi and jKi
with energy difference �E ¼ E0;T � E0;K.

Emission spectrum.—The emission spectrum at detun-
ing � from the laser frequency !L is proportional to the
spectral function

Sð�Þ ¼ X
n;m

%mjhnjh*e#jmij2�ðEn � Em þ �Þ; (2)

where jmi and Em are eigenstates and eigenenergies of the
Rabi-Kondo model. We assume that spontaneous emission
has a negligible effect on the system’s steady state, which
is taken to be a thermal state in the rotating frame at the

temperature T of the solid state environment, %m ¼
Z�1e�Em=T [9], and concentrate on T ¼ 0. To simplify
the discussion we will address mostly the �E ¼ 0 case
below (achieved by properly tuning the laser frequency!L

to resonance), where the secondary screening effect is most
pronounced, and defer the treatment of finite �E to the
Supplemental Material [9]. Figure 1(b) schematically sum-
marizes the main features of typical numerical renormal-
ization group (NRG) [11–13] results for the emission
spectrum in Figs. 1(c) and 1(d).
For � � TK, no signatures of Kondo physics are

expected. The emission spectrum can be completely under-
stood in terms of a dressed state ladder with the assumption
�SE ¼ 0 and an intramanifold, FB-induced decay process
[14,15]. The spectrum has two peaks: a broad peak at
j�maxj ¼ 2� and a � peak at � ¼ 0, both with equal weight
0.25 [see Fig. 1(b), blue line].
The situation is much more interesting for the Kondo-

dominated regime, � � TK, which we consider hence-
forth. Here one might attempt to treat the QD-laser
coupling [last term in Eq. (1)] as a perturbation. This would
yield a spectrum that is essentially the same as the � ¼ 0
spectrum calculated in Ref. [4]. However, we will show
momentarily that this is correct only if the frequency j�j is
larger than a new energy scale �� � TK.
Effective model.—In order to understand this restriction

on the perturbative treatment of the QD-laser coupling, as
well as to derive the low-frequency behavior, we introduce
an effective Hamiltonian H0, which captures the essential
physics of H in the entire regime j�j< TK. It can be
thought of as the result of integrating out the degrees of
freedom in the Rabi-Kondo model H with energies larger

PRL 111, 157402 (2013) P HY S I CA L R EV I EW LE T T E R S
week ending

11 OCTOBER 2013

157402-2



than TK. We can concentrate on just two states of the QD
together with the surrounding FB degrees of freedom: the
Kondo singlet state restricted (subscript r) to a FB region
of screening cloud size & 1=TK, jKir, and the trion state
jTir, with no screening cloud. We thus replace the QD and
the nearby degrees of freedom of the FB by a two level
system (TLS) whose �0

z ¼ �1 (�0
i being the Pauli matri-

ces) eigenstates correspond to the jTir and jKir, respec-
tively. These are coupled by the laser and are split in
energy. Furthermore, the outer electrons with energies
&TK experience different scattering phase shifts depend-
ing on the state of the TLS. Taking jKir as reference state
relative to which phase shifts are measured, we have
�K
� ¼ 0 and, by the Friedel sum rule [16], �T

� ¼ ���,
where �� ¼ ðnTe� � ��#Þ � nKe� ¼ �=2 is the total dot

charge difference per spin between jTir and jKir. All this
is captured by the following Hamiltonian:

H0 ¼X
k�

"0k�c
0y
k�c

0
k� þ�0�0

x þ�E0

2
�0

z þP0
T

X
�;k;k0

U0
�c

0y
k�c

0
k0�:

(3)

The first term describes the FB degrees of freedom
whose distance from the QD is larger than �1=TK, corre-
sponding to a reduced half-bandwidth D0

0 � TK. The

second term describes optical excitations, with �0 ¼
�rhKjh*e#jTir / �. The third term is the detuning,�E0 ¼
�E [17]. Finally, the last term accounts for the scattering of
the FB electrons by the TLS, where P0

T ¼ ð1þ �0
zÞ=2 is a

projector onto the trion sector. To reproduce the phase
shifts mentioned above, we choose U0

� equal to �� times
a large positive numerical value (�D0

0) which satisfies

��0U0
� ¼ � tanð���Þ. NRG energy flow diagrams con-

firm that H0 is a good description of the system below TK

[9]. For j�j< TK, the emission spectrum Sð�Þ for the Rabi-
Kondo model is reproduced qualitatively by S0ð�Þ com-
puted as in Eq. (2), with H0 and �0� replacing H and h*e#,
respectively, [9].

Intermediate-frequency behavior and emergence of a
new energy scale.—To lowest order in �0, the behavior
of S0ð�Þ is governed by the AO between the TLS states jKir
and jTir, caused by the difference in phase shifts the FB
electrons experience in the two states. The spectrum thus

behaves as a power law, S0ð�Þ � j�j2�0
x�1, with AO

exponent 2�0
x ¼ ½�K

" ��T
" �2=�2 þ ½�K

# ��T
# �2=�2 ¼ 1=2

[13,18], in agreement with the � ¼ 0 results of Ref. [4].
This implies that the hybridization operator �0

x has a scal-
ing dimension �0

x ¼ 1=4< 1 and is thus a relevant pertur-
bation near the fixed point �0 ¼ 0. Thus the leading-order
renormalization group flow equation for �0 as one
decreases the cutoff D0 from its bare value D0

0 is [19]

D0 d

dD0

�
�0

D0

�
¼ ð�0

x � 1Þ�
0

D0 : (4)

The dimensionless coupling �0=D0 therefore grows and
becomes of order 1 when the cutoff reaches the scale

�� ¼ D0
0

�
�0

D0
0

�
1=ð1��0

xÞ � TK

�
�

TK

�
4=3 � TK: (5)

Hence, one may treat the term �0�0
x [corresponding to the

last term in Eq. (1)] as a perturbation only if j�j � ��. The
power law Sð�Þ � j�j�1=2 thus applies at intermediate
frequencies, �� � j�j � TK. The power-law divergence
of the spectrum is cut off around j�j ��� [13], resulting in
a maximum in the spectrum at this scale, as confirmed by
the NRG data shown in Fig. 1. The emergence of this new
energy scale is one of our central results. At low frequen-
cies, j�j � ��, the physics is governed by a new fixed
point, which we now discuss.
Secondary Kondo screening.—To understand this new

fixed point we formally argue below thatH0 can be mapped
onto the anisotropic Kondo model. This ‘‘secondary’’
Kondo model should not be confused with the original
‘‘primary’’ isotropic Kondo model for the QD spin. The
role of the secondary Kondo temperature is played by ��;
at energies below��, the original system flows to a strong-
coupling fixed point featuring strong hybridization of
Kondo and trion sectors, as confirmed by NRG level-flow
data [9]. The low-energy behavior is universal when
energies are measured in units of ��.
One of the predictions of this secondary Kondo picture is

that the ground state of H for � � TK and �E ¼ 0 is an
equal-amplitude superposition of the Kondo and trion
states, with some secondary screening cloud, whose dis-
tance from the QD is larger than the primary Kondo length
/ 1=TK. To understand this nested screening cloud struc-
ture, consider jKi (ground state for � ¼ 0, �E> 0) as a
reference state where the QD valence levels are filled and
its conduction levels carry half an electron of each spin.
Since the total spin is zero, the correlation function
between the QD spin and the total FB spin is hSzQDSzFBi ¼
hSzQDðSzFB þ SzQDÞi � hðSzQDÞ2i ¼ �hðSzQDÞ2i ¼ �1=4. This

implies that when projecting into the subspace with spin-up
(spin-down) in the QD, the FB has a net additional single
spin-down (spin-up) electron [20] within a screening cloud
up to a distance / 1=TK from the QD [indicated by ellipses
in Fig. 2(a)]. If, on the other hand, � ¼ 0 but �E< 0, the
system is in the trion state jTiwith two QD electrons and a
spin-up hole, and no screening cloud [Fig. 2(b)]. The
absorbed �L ¼ þ1 photon induces a change in QD charge
per spin of ��, thus causing the phase shifts �T

� ¼ ��=2
with respect to the reference state, as mentioned above.
Turning on the laser source �, when �E ¼ 0, the ground
state is an equal-amplitudes superposition of the Kondo and
trion states (hPTi ¼ hPKi ¼ 1=2), as depicted in Fig. 2(c).
In analogy with the screening of a QD spin in a Kondo
singlet, the FB screens the spin configurations of the jTir
and jKir states, which, respectively, have spin �=4 or
��=4 with respect to their mutual average of �=4, by
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creating FB spin configurations with an opposite spin of
��=4 or �=4 (i.e., half an electron spin) within distance
�1=�� of the QD, respectively, [21]. This nested screen-
ing cloud indeed appears in the NRG results in Fig. 2,
further confirming our effective low-energy description.

Low-frequency behavior and � peak.—To derive the
low-frequency behavior of the spectrum, as well as the
appearance of the elastic � peak mentioned in the introduc-
tion, wemake the notion of ‘‘secondary Kondo effect’’ more
precise. This can be done formally by transformingH0 into a
secondary Kondo model in two stages: (i) Upon bosoniza-
tion of the FB [22] H0 becomes the spin-boson model with
Ohmic dissipation [23,24], the basic idea behind this map-
ping being that the low-lying particle-hole excitations of the
FB are bosonic in nature, with a linear (Ohmic) density of
states, and (ii) the spin-bosonmodel can bemapped onto the
anisotropic Kondo model [1,2]:

H0
K ¼ �ivF

X
�¼";#

Z
dxc y

�ðxÞ@xc �ðxÞ þ Jz
2
S0zs0zð0Þ

þ Jxy
2

S0�s0þð0Þ þ H:c:��EzS
0
z; (6)

where vF ¼ 1=ð��0Þ is the Fermi velocity, S0i are the com-

ponents of the secondary Kondo impurity spin, and s0ið0Þ ¼P
�;�0c �ð0Þy���0

i c �0 ð0Þ=2 (�i being the Pauli matrices)

are the FB spin density components in the vicinity of
the impurity. Under this mapping �0

z ¼ 2S0z (hence,
�Ez / �E0), but �0þ ! S0þs0�ð0Þ.
One can now use known results on H0

K to find the low-

frequency (j�j � ��) behavior of the emission spectrum
of H0. By the above mapping S0ð�Þ is proportional to the
spectral function of the retarded correlator of S0þs0�ð0Þwith
its conjugate in H0

K. Since the anisotropic antiferromag-

netic Kondo problem flows to the same strong-coupling
fixed point as the isotropic version, the calculation of low-
frequency power-law exponents can be done in the iso-
tropic case Jz ¼ Jxy, where the S

0þs0�ð0Þ correlator can be

replaced by the S0zs0zð0Þ correlator. At low energies, after
the impurity spin is screened by the FB, S0zs0zð0Þ can be
replaced by the square of the local density of the z compo-
nent of the electronic spin, which is a four-fermion opera-
tor. Thus, if the effective magnetic field vanishes,
�Ez ¼ 0, its correlation function scales at long times
(t > 1=��) as t�4, leading to a �j�j3 low-frequency
behavior of the corresponding spectral function. The

same then applies to Sð0Þð�Þ in the regime j�j � ��. This
is indeed the behavior of the NRG results, cf. Fig. 1(c) and
Ref. [9].
The above picture leads to another implication for the

spectrum: Since the relevant perturbation �0�0
x strongly

hybridizes, and thus cuts off the AO between the jKi and
jTi states at energy scales smaller than �� [13], a Dirac �
peak is now allowed to appear in the spectrum at � ¼ 0. By
the definition of S0ð�Þ, its weight is �weight ¼ jh�0

xij2. Since
�� is the only low-energy scale, we expect that �0h�0

xi /
�� / �04=3. Hence, h�0

xi / �01=3 / �1=3, leading to

�weight / �2=3, which is in excellent agreement with the

NRG results, Fig. 1(d) [25,26].
Conclusions.—Laser excitation of a QD in the Kondo

regime leads to a new correlated state featuring a nested
spin screening cloud in the FB (Fig. 2) and gives rise to a
specific double-peaked emission line shape (Fig. 1): (i) a
broad peak centered at a renormalized Rabi frequency ��

[Eq. (5)], with a �j�j�1=2 red tail, resulting from the AO
between ground and postemission states resembling jTi
and jKi at length scales� 1=��. A Fermi-liquid-type blue
tail stems from the cutoff of the AO by the relevant Rabi
coupling, as ground and postemission states share a ‘‘com-
mon’’ FB configuration at length scales� 1=�� due to the
secondary screening cloud. (ii) This common FB region

leads to a � peak at � ¼ 0 with weight / �2=3. The �
dependence of the coherent Rayleigh scattering strength in
the presence of a finite spontaneous emission rate �SE

remains an open question.
We acknowledge helpful discussions with A. Rosch.

This work was supported by an ERC Advanced
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form of the spectrum for j�j< �SE and the distribution of
�weight into an elastic and inelastic contribution.
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Supplemental Material: “Proposed Rabi-Kondo Correlated State in a Laser-Driven
Semiconductor Quantum Dot”

Discussion of the Hamiltonian H and Born-Markov approximation

Here we discuss the form of the Rabi-Kondo model HamiltonianH, Eq. (1) in the main text, in more detail.
The QD part reads HQD =

∑
σ (εe − Uehnh)neσ + Une↑ne↓ + εhnh. The eigenenergies are conveniently

displayed vs. the gate voltage which controls εe and εh, in Fig. S1(a). The lowest energy QD state in the
subspace with hole number nh = 0 or 1 is denoted by a purple or blue solid line, respectively. We focus
on a gate voltage regime around V0, as marked in Fig. S1(a). In this regime the lowest energy QD states
carry one negative charge. Applying a monochromatic laser with photon energy ωL ' εh leads to the
rotating frame Hamiltonian HQD,L =

∑
σ (εe − Uehnh)neσ + Une↑ne↓ + (εh − ωL)nh, effectively shifting

the purple line to the vicinity of the blue line. If the detuning δL to the bare QD transition is small, then
there exists a low energy description of HQD,L involving only the states |↑〉 , |↓〉 and the trion |↑↓⇑〉 shown
in Fig. 1(a) of the main text.

We now add to HQD,L the QD-laser coupling in rotating wave approximation, HQD−L = Ωe†↓h†+ h.c.,
(we assume a circularly polarized laser and apply optical selection rules to simplify the problem, see main
text) and a radiative reservoir Hrad (leading to a spontaneous emission rate γSE on the order of 1µeV ).
For Ω� γSE a three-peak Mollow triplet, similar to the red curve in Fig. S1(b), can be detected in the RF
spectrum. The central peak appears at the laser frequency, ω = ωL and the two side peaks at detuning
ν = ω − ωL = ±2Ω.

If we now include the fermionic bath (FB), HFB =
∑
kσ εkσc

†
kσckσ, and the QD-FB hybridization

HQD−FB, the Hamiltonian reads H + Hrad with H as in Eq. (1) of the main text. For a weak QD-FB
coupling and temperatures T > TK we make a Born-Markov approximation for the QD-FB coupling [1, 2],
the corresponding transition rates in the dressed-QD Master equation crucially rely on the ratio between
laser Rabi frequency Ω and sample temperature T . While Ω � T leads to a broadening of the ordinary
Mollow RF-spectrum by symmetric thermal rates γT in each dressed-state manifold, a dominant laser
Ω � T results in asymmetric intra-manifold rates γΩ and an asymmetric doublet in the RF spectrum,
see Fig. S1(b), along with the dressed-state schematics. In this case, the FB cannot provide the energy
difference for an upward transition between the dressed states. In experiment, the formation of an
asymmetric doublet would have to be carefully distinguished from the effect of a finite laser detuning
[which we have set to zero in Fig. S1(b)].

To access Kondo physics, T < TK is required and the Born-Markov treatment of the dressed QD-FB
interaction is no longer valid. With the spectral function defined as

S (ν) = 1
2π

ˆ ∞
−∞

dτ
〈

(he↓)† (τ) (he↓)
〉

ss
e−iντ . (S1)

the RF-spectrum is given by γSE · S (ν) [3]. Here, the occurrence of γSE shows that Hrad has explicitly
been used in the derivation. If the coupling to the radiative reservoir is weak (i.e. γSE smaller than
all other energy scales), we neglect Hrad to higher order in Eq. (S1), i.e. we approximate (he↓)† (τ) '
eiτH(he↓)†e−iτH . Further, a similar approximation is done for the steady state density matrix ρss used in
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Eq. (S1) (〈...〉ss denotes a trace over ρss): We assume that thermalization of the system due to the solid
state environment at temperature T takes place on timescales much faster than spontaneous emission.
Then, we neglect Hrad for ρss and assert that

ρss = ρeq = e−H/T /Tr
(
e−H/T

)
(S2)

serves as a good approximation of the steady state. This leads to a RF spectrum that has support for
ν . T only. We will further discuss effects related to the neglect of Hrad in the last section of this
Supplemental Material.

With these two important simplifications, the numerical study is facilitated considerably, Eq. (S1) can
be written in Lehmann form and we arrive at Eq. (2) of the main text where the eigenstates and -energies
of H (as computed approximately by NRG) are used.
To conclude, the main text investigates how the asymmetric two peak structure (blue line in Fig. S1(b)
for Ω� T > TK) changes when we increase the QD-FB coupling beyond perturbatively weak values, i.e.
increase TK above T . We investigate the more interesting regime TK � Ω in detail and comment briefly
on the case TK � Ω.

S(ν) 

ν=ω−ωL

Ω<<Τ

γΤ

Ω>>Τ

|+,M+1>
|-,M+1>

|+,M>
|-,M>

2Ω
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|  ,M>

γΩ

(a) (b)

E
ne

rg
y

Gate voltage

|↑↓⇑〉|e,⇑〉
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|⇑〉

|e〉 =
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parameter region of interest
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m
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εe=Ueh 2(εe-Ueh)= -U

εe=0 εe= -U

Figure S1: (a) Energy level diagram for HQD vs. gate voltage. We assume that the gate voltage is tuned to
the vicinity of V0 where the ground state of HQD|nh=0 and HQD|nh=1 carries one negative charge, ωL is the laser
frequency and δL the detuning from the bare QD-transition. (b) Application of a resonant laser (δL = 0) and weak
coupling to a FB at temperature T � TK leads to formation of QD dressed states |±〉 = (|↑↓⇑〉 ± |↑〉) /

√
2 where |↑〉

and |↓〉 denote QD states carrying one electron of spin up or down, respectively, while |↑↓⇑〉 denotes a negatively
charged exciton including a hole. The index M or M − 1 counts the number of excitations (i.e. laser photons +
holes), see [3], Ch. VI. Intra-manifold rates induced by the FB are denoted by solid arrows, steady state population
by filled circles and spontaneous emission transitions by dashed arrows. The RF spectrum calculated using a
Markovian master equation (neglecting Kondo correlations) shows a broadened Mollow triplet for TK � Ω � T
(red) and an asymmetric doublet for Ω� T � TK (blue).

NRG energy flow diagrams for the Rabi-Kondo model H

The numerical renormalization group (NRG) is a method to approximately diagonalize quantum impurity
Hamiltonians where a few-level system, described byHimp (the impurity - or, in modern literature, the QD)
is coupled to a (fermionic) bath, H = Himp +Himp−FB +HFB [4]. The strategy is to approximate HFB by
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a tight-binding (Wilson-)chain where the coupling between two successive sites is exponentially decreasing
as Λ−n/2 for site index n, where Λ > 1 is a non-physical NRG discretization parameter. The QD is included
as a site with index zero, only coupled to the first FB Wilson site (QD plus first FB Wilson site will be
called “odd” Wilson chain). Each Wilson site can be identified with an exponentially decreasing energy
scale Λ−n/2, or, by looking at the associated fermionic wavefunction, with an exponentially increasing
spatial separation Λn/2 from the QD position.

Due to the separation of energy scales along the Wilson chain, the chain Hamiltonian HN , restricted to
the first N sites, can be diagonalized iteratively. After multiplying HN by ΛN/2, the lowest eigenenergies
can be plotted vs. N in an NRG energy flow diagram, thus showing high to low energy scales of H from
left to right. Moreover, as a Wilson site can also be identified with a length scale in the impurity problem,
the NRG flow accesses physics at increasing spatial separation from the impurity site with increasing
N . Regions in which the rescaled eigenenergies form parallel horizontal lines are called fixed points -
they can be described by fixed point Hamiltonians which are invariant under the renormalization group
transformation.

Compared to computations of the quench spectral function in Ref. [5] for Ω = 0, there are consid-
erable conceptual changes for the computation in the Ω > 0 case, described by the Rabi-Kondo model
Hamiltonian, written as

H =
(

HT Ωe†↓h
†
⇑

Ωh⇑e↓ HK

)
. (S3)

Most important is the loss of a quench setup between initial and final Hamiltonian, meaning that the hole
is to be treated as a dynamic quantity. The NRG calculation in [5] relied on two separate NRG runs,
separately diagonalizing the initial and final Hamiltonian given by HK ≡ PKHPK and HT ≡ PTHPT ,
respectively. Then the corresponding two sets of eigenstates and -energies entered the analogue of Eq. (2).
For Ω > 0, however, we have to use only one NRG run for the full Hamiltonian H. Since this technical
change comes with a number of important consequences, we first discuss these issues in the simple Ω = 0
case.

For Ω = 0, we define the ground state energy difference between HT and HK as

∆E ≡ E0,T − E0,K (S4)

which has two contributions: On the one hand, the laser detuning δL from the bare QD transition affects
∆E trivially, on the other hand, a hybridization Γ > 0 causes Kondo correlations in the HK Kondo singlet
ground state |K〉 that additionally lower its energy. The energy level diagram is shown in Fig. S2(a)
for ∆E > 0 (laser tuned to bare QD transition, δL = 0) and ∆E = 0 (b). Note that with a single
logarithmic discretization, only low-lying eigenstates close to the overall ground state energy are resolved
with increasing accuracy (orange rungs in Fig. S2 are NRG energy eigenvalues). This means if we use
for example δL = 0 (∆E > 0), as shown in (a), the state |K〉 is well resolved while the |T〉 state is
not well described in NRG and does not have a reasonable steady state population since ρss ∝ e−H/T .
Numerically feasible is the case shown in (b). Using a laser blue-detuned with respect to the bare QD
transition (δL > 0), one can counteract the correlation energy and push the |K〉 up (relative to |T〉) to
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adjust ∆E = 0. This leads to good resolution and finite population for both ladders, as the steady state
expectation values 〈PK〉 ' 0.5 ' 〈PT〉 show.
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Figure S2: Effect of ∆E for one NRG diagonalization in the Ω = 0 case: (a) ∆E > 0 features a good resolution for
the highly-correlated low-energy states above |K〉, but not for the trionic states above |T〉 and there is only a very
small steady state hole population. (b) For ∆E = 0, a good resolution for both families of states is achieved along
with approximately equal steady state population in both ladders. (c) to (f): Flow diagrams for various parameter
combinations ∆E and Ω, with the red box showing the intermediate fixed point H|Ω=0. The NRG parameters are:
Discretization Λ = 2.7, number of kept states Nkeep = 1800 and chain length Nmax = 60. The model parameters
are the same as in Fig. 2 in the main text and the numbers attached to the final fixed point levels denote the
degeneracies of the respective eigenenergies.

To find the right laser energy to compensate the ground state energy difference and ensure ∆E = 0,
NRG flow diagrams are employed: Both Hamiltonians HT and HK have distinct and well understood low
energy fixed points: The HK fixed point [obtained by setting ∆E > 0 and Ω = 0, see Fig. S2 (d)] describes
the primary Kondo singlet state and its excitations. The degeneracies for odd Wilson site indices n (’odd
spectrum’) are 4, 16,... . The HT fixed point, describing the trion state and its excitations [∆E < 0 and
Ω = 0, see Fig. S2 (e)] features the degeneracies 1, 2, 2, 1, 4, 1,... . Consequently, since we still consider
the uncoupled Ω = 0 case, the H flow diagram for ∆E = 0 [Fig. S2 (f)] consists of a combination of the
flow diagrams of the two decoupled Hamiltonians HT and HK. This can be seen in detail by comparing
state degeneracies (1, 4, 2, 2, 1, 4, 1, 16,...) which are a combination of the aforementioned degeneracies
of HK and HT. We used this fact as a technical trick guiding us how δL should be fine-tuned to reach
∆E = 0.

We now turn to the case where the trion and photon subspaces are coupled by stimulated absorption
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and emission events for Ω > 0. The parameter ∆E is still defined with respect to the Ω = 0 case. Due
to the discretization issues mentioned above, results for |∆E| � Ω should be regarded with care. We
diagonalize the full Rabi-Kondo model, Eq. (S3). The flow diagram for Ω = 10−4TK and ∆E = 0 is shown
in Fig. S2(c). We observe the emergence of a new fixed point below an energy scale

ν∗ ' max (|∆E|,Ω∗) (S5)

which generalizes Ω∗ from Eq. (5) for finite ∆E.
Between the scales TK and ν∗, the fixed point spectrum for Ω > 0 in Fig. S2 (c) has the same structure

as the fixed point found for Ω = 0 in Fig. S2 (f), as can be seen by comparison of the red boxes. Hence,
the intermediate fixed point for Ω > 0 in Fig. S2 (c) can be understood as a combination of HK and HT.
This further implies that the QD-perturbation Ω, though local, only affects the system far away from the
QD.

Eq. (S5) can be understood by noting that for finite ∆E(′) the RG flow, Eq. (4), is augmented by a
similar equation for ∆E′ which, like the displaced charges, scales with ∆E′/D′ and Ω′/D′ in second order.
Since ∆E′/D′ and Ω′/D′ are small initially compared to unity, ∆E′ and U ′σ do not flow appreciably under
RG. Consequently, in the RG flow, the normalized TLS parameters Ω′/D′ and ∆E′/D′ increase. As soon
as the larger one reaches unity, the scaling equations lose validity. For |∆E′| � Ω∗, the renormalized
Rabi frequency Ω′ will increase to the renormalized bandwidth D′ before D′ reaches ∆E′ and we enter
the strong-Ω fixed point below Ω∗, as discussed in the main text. If however |∆E′| � Ω∗, the TLS energy
splitting ∆E′ determines the scale of the uncoupled fixed point, as expressed in Eq. (S5), for the unprimed
parameters of the original model H.

The effect of Eq. (S5) on the broad peak position |νmax| of the emission spectrum is shown in Fig. S3(a).
Analogously, the expression for the weight of the δ-peak is also modified with a cutoff at |∆E| = Ω∗

(Fig. S3(b)). For |∆E| � Ω∗ the ground state contains either the trion or the Kondo state, so that
δweight = |〈h⇑e↓〉|2 vanishes due to AO between ground and post-quench state.
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Figure S3: NRG results for the Rabi-Kondo model, Eq. (1), for finite ∆E: The position of broad peak |νmax| in (a)
and the weight of δ−peak in (b) both deviate from the ∆E = 0 case at Ω∗ ' ∆E where the nature of the low energy
fixed point changes according to Eq. (S5). (c) Log-log plot of the normalized broad emission peak (S̃ (ν < 0), for
details on the normalization see below) for various parameters Ω and ∆E. Thick solid lines denote spectra with
∆E = 0, dashed and dash-dotted lines represent ∆E = ±10−3TK, respectively. The straight dashed lines represent
power-law functions.
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Quantum Quenches and Beyond: Anderson Orthogonality, Hopfield Rule and their appli-
cation for S(ν)

In this section, we provide some background information on the concept of Anderson Orthogonality (AO),
the Hopfield Rule and their application in the discussion of the emission spectrum S(ν). The basic idea
is that for Ω = 0 spontaneous emission can be thought of as a transition corresponding to a quantum
quench, showing AO, while for Ω 6= 0, the signatures of AO are cut off at sufficiently low frequencies.

Anderson Orthogonality (AO) and Hopfield Rule (see also Ref. [6] for an extensive discussion): When-
ever a quantum quench changes the local scattering potential for a FB, the overlap between the initial and
final FB ground states, |Gi〉 and |Gf〉, vanishes with increasing electron number N as |〈Gi|Gf〉| ∝ N−

1
2 ∆2

AO

where ∆AO is called the AO exponent. In the thermodynamic limit N →∞, the initial and final ground
states are thus orthogonal for ∆AO 6= 0. There are two important remarks: (i) Anderson [7] showed that
the exponent ∆AO equals the displaced electronic charge (in units of e) in the quench, i.e.

∆AO = 〈Gf |ntot|Gf〉 − 〈Gi|ntot|Gi〉 , (S6)

where ntot counts the (spinless) electrons in a large volume Vlarge including the scattering site (QD).
For spinful fermions, if the spin-channels are decoupled such that the FB ground states factorize, the
correspondence is generalized to

∆2
AO = ∆2

AO,↓ + ∆2
AO,↑. (S7)

Note that by Friedel’s sum rule, the displaced charge is connected to the scattering phase shift δσ for
electrons with spin σ = ± by ∆AO,σ = δσ/π. (ii) AO has important consequences for the low frequency
behavior of generic quench spectral functions A similar to S (ν) in Eq. (2). AO causes the spectral function
to behave as A (ν) ∝ ν−1+∆2

AO , where ν is measured with respect to a threshold frequency.
Application of AO to emission spectrum S(ν): We start our discussion with the quench Hamiltonian

H|Ω=0 = HQD,L +HQD−FB +HFB = HK +HT which we represent schematically in Fig. S4(a). The dashed
line between the QD (circle) and the FB (box, in Wilson chain approximation) represents a tunnel cou-
pling, the horizontal axis denotes decreasing energy or increasing length scales as in a NRG flow diagram
(see above). If we assume ∆E = 0, the degenerate ground state |G〉 |Ω=0 is a superposition of the trionic
state |T〉, ground state of HT shown in (b), and the Kondo singlet state |K〉 = (|↑〉 |FB↓〉 − |↓〉 |FB↑〉) /

√
2,

ground state of HK, depicted in (c). While |K〉 features strong correlations between QD and FB, the trion
state can be well approximated as a simple QD-FB product state |T〉 = |↑↓⇑〉 |FB0〉 where |FB0〉 is the
unperturbed Fermi sea, i.e. all Wilson sites are half occupied. Let us take the state |K〉 as reference,
where the QD valence levels are filled (no holes present) and its conduction levels harbor half an electron
of each spin. The region where the FB parts of the |K〉 state, |FBσ〉, support an additional spin σ (the
screening cloud) is encircled by a yellow ellipse. Relative to |K〉, the state |T〉 features displaced charges
∆T,σ = σ/2, respectively (the ⇑-hole counts like a missing ↓-electron). Before discussing emission, let us
consider an absorption event. Acting on |G〉 |Ω=0 with the operator e†↓h

†
⇑, we first project on the compo-

nent |K〉 and then create a hole and a spin down electron in the conduction level. The resulting state can
“lower its energy” [8] by adjusting its spin configuration to the |T〉 state (b).

A priori, it is not obvious how an absorption process described by the operator e†↓h
†
⇑ for Hamiltonian
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H can be treated in the framework of AO. First, we recall a non-trivial feature of the Anderson impurity
model underlying HK, namely that the low-energy fixed point below TK can be described by potential
scattering off the complicated Kondo screening cloud structure [5]. This observation implies that AO
plays a role only for |ν| < TK, as documented by an −1/2 power-law tail [5] which is explained as
follows: Comparing the final state |T〉, to the initial state |K〉, the displaced charges (Eq. (S6)) read
∆σ ≡ ∆T,σ −∆K,σ = σ/2. Consequently, for the quench connecting these two ground states in the long
time limit, we find from Eq. (S7)

∆2
AO = ∆2

AO,↓ + ∆2
AO,↑ = (∆T,↑ −∆K,↑)2 + (∆T,↓ −∆K,↓)2 = 0.5. (S8)

Since only the magnitude of the displaced charges, (∆T,σ − ∆K,σ)2, enters this equation, ∆2
AO and the

−1/2 power-law tail is the same for the emission process.
The second issue is the presence of the coherent laser drive, HQD−L ∝ Ω in H leading to stimulated

absorption and emission processes. Thus spontaneous emission or absorption does not introduce a quan-
tum quench, since the subspaces PT and PK are not dynamically decoupled [9]. However, if Ω is small,
we can expect that the post-emission dynamics is not affected by the existence of Ω up to some time
τ = 1/Ω∗ (i.e. eiτH(h⇑e↓)†e−iτH ' eiτH|Ω=0(h⇑e↓)†e−iτH|Ω=0 in Eq. (S1) for τ < 1/Ω∗) and that the
spectral function therefore shows AO behavior as in a proper quench situation for |ν| > Ω∗. The relation
between Ω∗, Ω and the displaced charges can be found by a renormalization group analysis as sketched
in the main text.

(a)

Wilson site m: spatial separation from QD or decreasing energy scale

mTK

(b)

(c)

TLS(d)

-

FB

effects

:

:

:

:

QD

potential scatterer

Figure S4: Cartoon of some Hamiltonians and states mentioned in the main text. (a) The quench Hamiltonian
H|Ω=0 is of quantum impurity type, featuring a local QD and laser part tunnel coupled to the extended FB. The
trionic state (b) can lower its energy after a spontaneous emission process mediated by h⇑e↓ by the formation
of correlations (c) between QD and surplus FB spins where the latter are contained in a region of extent 1/TK
around the QD (yellow ellipse). The Kondo singlet and trion configuration both act as potential scatterers for the
surrounding FB electrons. The effective Hamiltonian H ′, which explicitly contains a potential scattering term ∝ U ′σ
in the trion sector, reproduces the respective scattering phase shifts of (b) and (c). In any case, effects due to Ω > 0
are relevant above length scales 1/ν∗.
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Effective model H ′

Considering the NRG energy flow diagrams of the Rabi-Kondo model H in Fig. S2 we noticed that the
intermediate fixed point spectrum above ν∗ is composed simply of a combination of the spectra of HK

and HT. This shows that in this intermediate energy range, the spectrum of the full Hamiltonian space
can be decomposed into a direct sum of two subspectra, one describing the primary Kondo singlet state
and its excitations, the other the trion and its excitations. These get coupled only at energy scales below
ν∗. This fact is the main motivation for constructing the effective Hamiltonian H ′.

Before comparing H and H ′ NRG energy flow diagrams, we augment the heuristic derivation of the
effective model H ′ given in the main text in Eq. (3) by an intuitive graphical explanation in Fig. S4. The
effective model H ′ denoted schematically in Fig. S4(d) is designed to describe the effect of the transition
between |T〉 and |K〉 [from (b) to (c)] on FB electrons beyond a separation 1/TK from the QD. The
two-level-system (TLS), representing the QD plus the FB up to distance 1/TK, controls the scattering
potential U ′σ [wavy line in (d)] for the surrounding FB electrons. If the TLS changes its state, so does
the scattering potential – not only after a time scale 1/TK but (within the approximation of replacing H
by H ′) instantaneously like in a X-ray absorption process. For Ω′ = 0, σ′z is conserved and the displaced
electronic charge in a transition from |K〉r to |T〉r (TLS raising operators) is ∆′σ = −1/π · arctan (πρ′U ′σ)
(in units of e, e.g. [6]). To reproduce the displaced charge ∆σ = σ/2 as found above, we require ρ′U ′σ
being equal to −σ times a numerical value large compared to unity (we take ρ′U ′σ = −50× σ).

Now we can also consider the coherent QD-laser coupling. It is not a priori clear that H ′ as given
in Eq. (3), and the reasoning laid out above, would still be applicable for Ω(′) > 0. However, our NRG
calculations show (in accordance with a renormalization analysis and the discussion below Eq. (S5))
that the H|Ω>0 flow diagram does not differ from the Ω = 0 case for energies higher than ν∗ (compare
Figs. S2(c) and (f)), implying that it is indeed valid to consider the development of potential scattering
and the effects of Ω separately as long as ν∗ � TK.

NRG energy flow comparison for H and H ′: One of the implicit assumptions in replacing H by the
effective Hamiltonian H ′ with the scattering phase shifts as given above is that ne↑ + ne↓ − nh exactly
equals one. With the physical parameters as in Fig. 2 in the main text, this is only approximately true
due to Ueh <∞. Although this small deviation has no observable consequences in the emission spectrum,
turning to NRG energy flow diagrams resolving minute details of eigenstates and -energies, this issue will
matter. Therefore, as an intermediate step for a flow diagram bases comparison of H and H ′, in Fig. S5
(a)-(c) we show the (odd) flow diagrams for H|Ueh=100D0 where, as compared to the original H spectra
in Fig. S2, certain degeneracies in the trionic sector are restored. These flow diagrams then indeed agree
with those for the effective model H ′ [panels (d)-(f)].

Discussion of emission spectra for H(′) in the case ∆E(′) 6= 0

In Fig. S3(c), the Rabi-Kondo model emission spectrum, shown in Fig. 2(b,c) of the main text, is repeated
for finite ∆E. Since the total spectral weight is given by 〈nhne↓〉 ' O (〈nh〉), it is strongly dependent
on ∆E. To enable mutual comparison between results for different values of ∆E we normalize all NRG
spectra in this Supplemental Material as S̃ (ν) ≡ S (ν) / 〈nh〉. Fig. S6(a) schematically summarizes the
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Figure S5: Comparison of NRG energy flow diagrams for H|Ueh=100D0 [panels (a)-(c)] and H ′ [panels (d)-(f)] for
∆E(′) ≶ 0 and Ω(′) > 0. With the QD/TLS defined as Wilson site zero, the H|Ueh=100D0 flow diagrams show odd
NRG iterations and the H ′ diagrams even iterations such that an odd number of Wilson sites has been integrated
out in going from H to H ′. The H ′ flow diagrams mimic those of portions [boxed] of the H|Ueh=100D0 flow diagrams
that show the crossover from the intermediate to the strong-coupling fixed point.

generic features of the line shape. Coming from large detunings |ν|, the characteristic power-law tails
with exponents −2 (in the free orbital (FO) regime), −1 (in the local moment (LM) regime) and −1/2
(in the strong coupling (SC) regime), found and discussed by Türeci et al. in Ref. [5], are present also
for ν∗ < TK. Curly brackets indicate the range of validity of several Hamiltonians mentioned in the main
text. While treating Ω perturbatively using the quench Hamiltonian H|Ω=0 is a valid approximation
for |ν| > ν∗, the effective Hamiltonian in Eq. (3) provides the appropriate approximate description for
|ν| < TK and can explain the emergence of the low energy fixed point below ν∗. The RF spectrum for
the effective Hamiltonian H ′, calculated using Eq. (2) but with H ′ and σ′− taking the place of H and
h⇑e↓, respectively, is shown in Fig. S7. It indeed correctly reproduces all features of the H spectrum for
|ν| < TK, which we now discuss.

The fixed point at energy ν∗ causes a cut-off of the emission line shape; the nature of the line shape
below the cut-off energy depends on ∆E and Ω. Fig. S6(b) explains this regime 0 < |ν| < ν∗ in detail,
where we find a combination of +3 and +1 power-law tails as indicated schematically. We consider the
two cases Ω∗ ≶ |∆E| separately.
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(i) For Ω∗ > |∆E|, the transition between the +3/+1 power-law tails occurs at a scale

∆Eeff = ∆E + δ (Ω) > ∆E, (S9)

where δ(Ω) denotes an Ω-dependent effective detuning with 0 < δ (Ω)� Ω that captures the small driving
dependence which is attributed to second-order effects in the RG equations for ∆E′ discussed above. The
+3/+1 crossover is either sharp for ∆Eeff > 0 or gradual in the case ∆Eeff < 0. The analysis for the +1
exponent parallels the discussion for the +3 exponent in terms of the secondary Kondo model H ′K given
in the main text: The presence of an effective magnetic field (∆Ez 6= 0) in Eq. (6), corresponding to a
finite ∆E(′) in models H and H ′, causes the density of the z-component of the spin in H ′K to acquire a
nonzero average. Hence, the correlation function S′zs′z(0) will have components containing the correlator
of just two Fermi operators with their conjugates, which decays as t−2, leading to a ∼ |ν|+1 behavior of
the spectral function.
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Figure S6: Phenomenological discussion of S̃ (ν), revealing characteristic power-law tails. The same discussion
applies to S̃′ (ν) (for the effective Hamiltonian H ′) for |ν| < TK.

The effect described in Eq. (S9) can be clearly seen in the H spectrum for ∆E = 0 (Fig. S3(c),
Ω = 10−1TK, green solid line) which shows a transition to a +1 tail at ∆Eeff = ∆E + δ (Ω) = δ (Ω).
Further, the Ω = 10−1TK spectra for ∆E = ±10−3TK (green dashed and dash-dotted lines) do not differ
significantly since we have δ (Ω)� ∆E and thus, according to Eq. (S9), ∆Eeff is virtually equal in both
cases.

(ii) Turning to Ω∗ < |∆E|, (dash and dashed-dotted red lines in Fig. S3(c)) the +3 tail is absent; in
the case ∆E > 0 a smooth transition to the +1 tail occurs while for ∆E < 0 this transition is realized in a
steep drop beyond NRG’s smoothing resolution limit. This steep drop can be understood in the limiting
case Ω→ 0 as a horizontally displaced Ω = ∆E = 0 curve which has a threshold at |ν| = −∆E.

Implications for an experimental study and outlook

The NRG results shed light on the results of the competition between Kondo physics and the laser
coupling. As expected, the ratio of TK and Ω determines the predominant form of the emission line
shape, an asymmetric power-law-divergent peak in the Kondo-dominated regime Ω � TK, and a double
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Figure S7: S̃′ (ν < 0) for H ′ (without δ−peak). (a) ∆E′ = 0, (b) ∆E′ > 0 and (c) ∆E′ < 0. For reference, the
Ω′ = ∆E′ = 0 spectrum is repeated in all plots (solid black line).

peak structure in the limit Ω � TK. However, the role of the seemingly weaker effect is interesting:
A dominant driving laser leaves no trace of Kondo physics while dominant Kondo physics renormalizes
Ω to a smaller value but preserves its characteristic non-trivial double peak feature in the spectrum.
This explains our focus on the regime Ω < TK, which is highly attractive for further experimental study.
We remark that the main results should be also valid in a two laser setup (creating dressed states with
one laser, probing absorption with another), which might be experimentally more feasible than standard
resonance fluorescence.

For a strongly coupled device and temperatures T � TK, Kondo signatures in the absorption line
shape of a weak laser have already been detected in experiment [10]. An order of magnitude separation
between T (which flattens out all spectra for |ν| . T ) and TK as well as a spontaneous emission rate below
T has been achieved. For obtaining the predicted double peak structure in the resonance fluorescence
experiment with Ω < TK, the crucial condition T � ν∗ � TK has to be fulfilled. We expect that a non-zero
spontaneous emission rate will lead to partial broadening of the δ-peak at zero detuning, separating into
an elastic and inelastic component. For the proper inclusion of spontaneous emission in the theoretical
treatment, we propose an extension of the current study using the framework of Lindblad-NRG, currently
under development [11].

The total area of the peak at the laser frequency and the peak-to-peak separation to the red emission
peak are predicted to scale with Ω to the power 2/3 and 4/3, respectively. This is valid if ∆E (controlled
by the laser detuning) is smaller than the renormalized Rabi frequency Ω∗. Compared to the measurement
of power-law tails as signatures of Kondo physics, which require experimental data with sufficiently low
noise level, peak areas and peak-to-peak separations can be measured with relative ease. Further, the
scaling collapse of the broad emission peak with respect to ν∗, which is theoretically valid only for S(ν)
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with |∆Eeff | < |ν| < TK, should be a robust experimental feature since the regions where scaling fails (i.e.
|ν| > TK, |ν| < |∆Eeff |) are expected to support only a small spectral signal, effectively well below the
noise level.

It is interesting to compare the effect of a laser drive Ω with the consequences of a nonzero magnetic
field B (which we have set to zero throughout this work). While a circularly polarized laser coupling
in a QD removes the degeneracy of the spin up and down state just like a magnetic field B does, their
signatures in the emission spectrum in presence of Kondo physics are strikingly different. While a magnetic
field |B| < TK results in a smooth modification of the B = Ω = 0 fixed point (and consequently changes
the −1/2 power-law exponent in the RF line shape [5, 10]) a Rabi frequency Ω < TK induces a new low
energy fixed point while keeping the power-law exponent at −1/2. For nonzero B and Ω (both < TK) we
conclude that a modification of the Ω-scaling dimension ηx (in the original Rabi-Kondo model) due to B
would modify the 4/3 and 2/3 exponents for the Ω∗ and δweight-scaling with Ω. Thus, application of a
magnetic field could enhance the visibility of scaling effects on the emission spectrum in experiment.
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