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We analyze dephasing by electron interactions in a small disordered
quasi-one dimensional (1D) ring weakly coupled to leads, where we re-
cently predicted a crossover for the dephasing time τϕ(T ) from diffusive
or ergodic 1D (τ−1

ϕ ∝ T 2/3, T 1) to 0D behavior (τ−1
ϕ ∝ T 2) as T drops

below the Thouless energy ETh.1 We provide a detailed derivation of our
results, based on an influence functional for quantum Nyquist noise, and
calculate all leading and subleading terms of the dephasing time in the
three regimes. Explicitly taking into account the Pauli blocking of the
Fermi sea in the metal allows us to describe the 0D regime on equal foot-
ing as the others. The crossover to 0D, predicted by Sivan, Imry and
Aronov for 3D systems,2 has so far eluded experimental observation.
We will show that for T � ETh, 0D dephasing governs not only the
T -dependence for the smooth part of the magnetoconductivity but also
for the amplitude of the Altshuler-Aronov-Spivak oscillations, which re-
sult only from electron paths winding around the ring. This observation
can be exploited to filter out and eliminate contributions to dephasing
from trajectories which do not wind around the ring, which may tend to
mask the T 2 behavior. Thus, the ring geometry holds promise of finally
observing the crossover to 0D experimentally.

1.1. Introduction

Over the last twenty-five years many theoretical and experimental works

addressed quantum phenomena in mesoscopic disordered metallic rings.3

1
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This subject was launched in part by several seminal papers by Joe Imry

and his collaborators 4–11, and continues to be of great current interest. One

intensively-studied topic involves persistent currents, which can flow with-

out dissipation due to quantum interference in rings prepared from normal

metals.4,12–15 Attention was also paid to Aharonov-Bohm oscillations in the

conductance through a mesoscopic ring attached to two leads,5–7,10,16and

the closely related oscillations of the negativeweak localization (WL) cor-

rection to the magnetoconductivity.17,18These oscillations result from the

interference of closed trajectories which have a non-zero winding number

acquiring the Aharonov-Bohm phase. Both persistent currents and magne-

tooscillations require the ring to be phase coherent, since any uncertainty

of the quantum phase due to the environment or interactions immediately

suppresses all interference phenomena.19

The mechanism of dephasing in electronic transport and its dependence

on temperature T in disordered conductors was studied in numerous theo-

retical2,19–27 and experimental28–35 works. The characteristic time scale of

dephasing is called the dephasing time τϕ. At low temperatures phonons

are frozen out and dephasing is mainly due to electron interactions, with

the dephasing time τϕ(T ) increasing as T−a when T → 0 , a > 0.

The scaling of the dephasing time with temperature depends on the

dimensionality of the sample.20 It was predicted in a pioneering paper by

Sivan, Imry and Aronov2 that the dephasing time in a disordered quantum

dot shows a dimensional crossover from τϕ ∝ T−1, typical for a 2D electron

gas,20 to τϕ ∝ T−2 when the temperature is lowered into the 0D regime:

~/τϕ � T � ~/τTh , (1.1)

where τTh = ~/ETh is the Thouless time, i.e. the time required for an

electron to cross (diffusively or ballistically) the mesoscopic sample; ETh

is the Thouless energy. In this low-T , 0D regime, the coherence length

and the thermal length are both larger than the system size, independent

of geometry and real dimensionality of the sample. In this regime WL

is practically the only tool to measure the T -dependence of dephasing in

mesoscopic wires or quantum dots (the mesoscopic conductance fluctuations

go over to a universal value of order e2/h for T � ETh
3).

Although the τϕ ∝ T−2 behavior is quite generic, arising from the

fermionic statistics of conduction electrons, experimental efforts31–33 to

observe it have so far been unsuccessful. The reasons for this are today

still unclear. Conceivably dephasing mechanisms other than electron in-

teractions were dominant, or the regime of validity of the 0D description
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Fig. 1.1. A ring weakly coupled to leads: We assume a metallic system, where the

conductance at the contacts gcont is much smaller than the conductance of the ring g1
and of the lead glead, i.e. (glead, g1) � gcont � 1. This assures (a) that the average
time electrons spend in the ring (τdw) is much larger than the average time they need

to explore the whole ring (τTh) and (b) that the probability for electrons which escaped

from the ring to return back to it is small.

had not been reached. In any case, other ways of testing the dimensional

crossover for τϕ are desirable.

In a recent paper,1 we described the crossover of the dephasing time to

the 0D regime in a mesoscopic ring weakly coupled to leads. We considered

a ring of the type shown in Fig. 1.1 with dimensionless 1D conductance

g1 =
hσ0

e2

A

L
, (1.2)

where A and L are the ring’s cross section and circumference and σ0 is its

classical Drude conductivity. In the present paper we give a detailed deriva-

tion of our results based on an influence functional approach for quantum

noise. This approach explicitly takes into account the Pauli blocking of

the electrons in the metal, which will allow us to describe quantitatively all

regimes of the dephasing time in a quasi-1D ring on an equal footing and to

calculate first order correction terms to the dephasing time. In particular,

we will see that Pauli blocking dominates the regime of 0D dephasing. We

find that in the 0D regime, T−2 behavior also emerges for the amplitude

of the Altshuler-Aronov-Spivak (AAS) oscillations of the conductivity17 in

a magnetic field, which arise from pairs of time-reversed paths encircling

the ring at least once. A necessary requirement to reach this regime is that

electron trajectories are effectively confined in the system. Thus the con-

ductance through the contact, gcont, is assumed to be much smaller than

g1, such that the time an electron spends inside the ring, the dwelling time

τdw, is much larger than the time an electron needs to explore the whole

ring, i.e. the Thouless time τTh.
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We will show below that after subtracting from the amplitude of the

AAS-oscillations the non-oscillating background, only contributions to de-

phasing from paths encircling the ring will contribute. However, some of

these paths may involve loops which not only encircle the ring, but along

the way also enter the lead and reenter the ring (see Fig. 1.6(b) below).

Such lead-ring cross-contributions to dephasing will contribute a non-0D

T -dependence to the conductance and hence tend to mask the 0D behav-

ior. We shall argue that by additionally choosing the conductance of the

connected leads, glead, to be larger than gcont, dephasing due to lead-ring

cross-contributions, can be neglected, and the remaining contributions will

be characterized by 0D dephasing.

1.2. Dephasing and weak localization

In a disordered metal, the conductivity is reduced by coherent backscatter-

ing of the electrons from impurities, an effect known as weak localization

(WL). In a semi-classical picture it can be understood as the constructive

interference of closed, time-reversed random-walks through the metal’s im-

purity landscape. It is most pronounced in systems of low dimensionality d

where the integrated return probability becomes large for long times. For

an infinite system characterized by the diffusion constant D = vF l/d (vF is

the Fermi velocity and l is the mean free path), the probability of a random

walk of duration t to return back to its origin is given by

C0(t) = (4πDt)−d/2 . (1.3)

To leading order in 1/g1, the relative correction to the conductance (1.2)

can be written as

∆g =
∆σ

σ0
= − 1

πν

∫ ∞
0

dt C(t) , (1.4)

where ν is the density of states per volume in the ring and we have set

~ = 1 henceforth. The function C(t) is the so called Cooperon propagator

corresponding to the interference amplitude of the time-reversed random

walks. C(t) reduces to Eq. (1.3) if time-reversal symmetry is fully preserved.

Processes which destroy this symmetry lead to a suppression of this con-

tribution at long times, since the random walks and their time-reversed

counterparts acquire a different phase. The model we are considering as-

sumes a suppression of the Cooperon of the following form

C(t) ≡ C0(t) exp [−t/τH − t/τdw −F(t)] . (1.5)
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In Eq. (1.5), we consider dephasing due to the effect of an external magnetic

field leading to the cutoff τH ∼ 1/H of the integral in Eq. (1.4).43 Further-

more, our model of an almost isolated ring assumes an average dwelling

time, τdw, of the electrons in the ring.45

Our primary interest is the effect of electron interactions, which we

describe in terms of the Cooperon decay function F(t), which grows with

time and may be used to define a dephasing time via

F(τϕ) = 1 . (1.6)

Dephasing due to electron interactions can be understood roughly as fol-

lows: At finite temperatures the interactions lead to thermal fluctuations

(noise) of the electron’s potential energy V (x, t). Then the closed paths

contributing to WL and their time-reversed counterparts effectively “see” a

different local potential, leading to a phase difference. This is most clearly

seen in a path integral representation of the Cooperon in a time-dependent

potential,20 which is given by

C(t) ∝
∫ x(t)=x0

x(0)=x0

Dx eiϕ(t)e−
∫ t
0
dt1 L(t1) . (1.7)

Here the Lagrangian L(t1) = ẋ2(t1)/4D describes diffusive propagation,

and ϕ(t) is a phase corresponding to the time-reversed structure of the

Cooperon:

ϕ(t) =

∫ t

0

dt1 [V (x(t1), t1)− V (x(t1), t− t1)] . (1.8)

Assuming that the noise induced by electron interactions is Gaussian, the

decay function F(t) in Eq. (1.5) can be estimated from F(t) = 1
2 〈ϕ2〉crw,

where · · · denotes averaging over realizations of the noise and 〈. . . 〉crw over

closed random walks of duration t from x0 back to x0. F(t) is then given

in terms of a difference of the noise correlation functions, taken at reversed

instances of time:

F(t) =

∫ t

0

d2t1,2

〈
V V (x12, t12)− V V (x12, t̄12)

〉
crw

. (1.9)

Here t12 = t1 − t2 and t̄12 = t1 + t2 − t, while x12 = x(t1) − x(t2) is the

distance of two points of the closed random walk taken at times t1 and

t2. For an infinite wire and the case of classical Nyquist noise (defined in

Eq. (1.11) below), Eq. (1.9) has been shown26,27 to give results practically

equivalent to the exact results obtained in Ref. [20].
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1.3. Thermal noise due to electron interactions

Electron interactions in the metal lead to thermal fluctuations of the electric

field E, producing so-called Nyquist noise. In the high temperature limit, it

can be obtained from the classical Fluctuation-Dissipation Theorem leading

to a field-field correlation function in 3D of the form

EE(q, ω)
|ω|�T−−−−→ 2T

σ0
. (1.10)

Note that the fluctuations of the fields do not depend on q or ω, i.e. they

correspond to white noise in space and time. To describe dephasing in a

quasi-1D wire, we need the correlation function of the corresponding scalar

potentials V in a quasi-1D wire. Since E = 1
e∇V , the noise correlator that

corresponds to the classical limit (1.10) has the form

V V class(q, ω) =
2Te2

σ0

1

q2
. (1.11)

This so-called classical Nyquist noise is frequency independent, i.e. cor-

responds to “white noise”. For present purposes, however, we need its

generalization to the case of quantum noise, valid for arbitrary ratios of

|ω|/T . In particular, V V is expected to become frequency-dependent: it

should go to zero for |ω| � T , since the Pauli principle prevents scattering

processes into final states occupied by other electrons in the Fermi sea.38

A careful analysis of quantum noise has been given recently in Ref. [26]

and Ref. [27]. The authors derived an effective correlation function for the

quantum noise potentials that properly accounts for the Pauli principle. It

is given by

V V (q, ω) = ImLR(q, ω)
ω/2T

sinh (ω/2T )
2 (1.12)

with

LR(q, ω) = − Dq2 − iω
2νDq2 + (Dq2 − iω)/V (q)

; (1.13)

V (q) is the Fourier-transformed bare Coulomb potential (not renormalized

due to diffusion) in the given effective dimensionality.

If the momentum and energy transfer which dominates dephasing is

small then the second term of the denominator of Eq. (1.13) can be ne-

glected so that Eq. (1.13) reduces to

ImLR(q, ω) ' ω

2νDq2
. (1.14)
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This simplification holds true, in particular, in the high temperature (dif-

fusive) regime where ω � T .20 We will argue below (see Eqs. (1.54) to

(1.57)) that the same simplification can be used in the low temperature

regime where |ω| ∼ T . ETh.1

Inserting Eq. (1.14) in Eq. (1.12) with σ0 = 2e2νD/A, where A is the

cross-section perpendicular to the current direction, we obtain

V V (q, ω) =
2e2 T

σ0A

1

q2

(
ω/2T

sinh(ω/2T )

)2

. (1.15)

In the time and space domain, this correlator factorizes into a product

of time- and space-dependent parts:

V V (x, t) =
2e2 T

σ0A
Q(x) δT (t) , (1.16)

where δT (t) is a broadened delta function of width 1/T and height T :

δT (t) = πTw(π T t) , w(y) =
y coth(y)− 1

sinh2(y)
. (1.17)

The fact that the noise correlator (1.16) is proportional to a broadened

peak δT (t) is a direct consequence of the effects of Pauli blocking. Previous

approaches often used a sharp Dirac-delta peak instead. In the frequency

domain this corresponds to white noise and leads to (1.11), instead of our

frequency-dependent form (1.12). Such a “classical” treatment reproduces

correct results for the dephasing time when processes with small energy

transfers |ω| � T dominate. However, it has been shown in Ref. [2] that this

is in fact not the case in the 0D limit T � ETh, where the main contribution

to dephasing is due to processes with |ω| ' T . Thus, the results become

dependent on the form of the cutoff that eliminates modes with |ω| > T

to account for the Pauli principle. For such purposes, previous treatments

typically introduced a sharp cutoff, θ(T − |ω|), by hand. However, the

precise form of the cutoff becomes important in an analysis interested not

only in qualitative features, but quantitative details. The virtue of (1.11) is

that it encodes the cutoff in a quantitatively reliable fashion. (For example,

it was shown26 to reproduce a result first obtained in Ref. [23], namely the

subleading term in an expansion of the large-field magnetoconductance (for

quasi-1D wires) in powers of the small parameter 1/
√
TτH .)

The position-dependent part of Eq. (1.16), the so-called diffuson at zero

frequency Q(x), is the time-integrated solution of the diffusion equation.

In the isolated system, it satisfies

−∆Q(x) = δ(x) , (1.18)
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Fig. 1.2. (a) Illustration of our choice of the coordinate system: Both paths have the

same start and end point (0 7→ x), but the dashed path has winding number n = 0 and
the solid path n = 1. (b) Two closed paths in the ring contributing to the Cooperon.

The contribution of the solid path (with winding number n = 1) is affected by the flux

Φ, since the path (and it’s time-reversed counterpart) acquire an Aharonov-Bohm phase
when interfering with itself at their origin. This gives rise to the Altshuler-Aharonov-

Spivak oscillations. The dashed path with n = 0 is unaffected by the flux, since the

acquired phase at the origin is zero.

with given boundary conditions, which govern the distribution of the eigen-

modes of Q. In an isolated system, where a q = 0 mode is present, Q(x)

diverges. However, the decay function is still regular, since terms inQ which

do not depend on x simply cancel out in Eq. (1.9) and cannot contribute

to dephasing.

To evaluate the decay function Eq. (1.9), we note that only the factor

Q(x) in Eq. (1.16) depends on x, thus, the average 〈Q(x)〉crw has to be

calculated. This will be done in the next section for an almost isolated

ring. Then, after a qualitative discussion in 1.5, we proceed by evaluating

F(t) in section 1.6.

1.4. Diffusion in the almost isolated ring

The probability density of a random walk in a 1D, infinite, isotropic medium

to travel the distance x in time t is given by

P0(x, t) =
1√

4πDt
e−x

2/4Dt . (1.19)

In an isolated ring, electrons can reach each point without or after winding

around the ring n times, where n is called winding number. Denoting the

probability density for the latter type of path by Pn(x, t), the diffusion
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probability density can be expanded in n as

P (x, t) =

+∞∑
n=−∞

Pn(x, t) , Pn(x, t) =
1√

4πDt
e−(x+nL)2/4Dt , (1.20)

where L is the circumference of the ring and x ∈ [0, L] is the cyclic coordi-

nate along the ring, see Fig. 1.2(a). To model the effect of the two contacts

of the ring, we assume that an electron, on average, stays inside the ring

only for the duration of the dwelling time τdw, introduced in Eq. (1.5), and

then escapes with a vanishing return probability. This simplified model of

homogeneous dissipation, strictly applicable only in the limit τTh � τdw

and for a very large lead conductance, captures all the essential physics of

the 0D crossover we are interested in. Our present assumptions lead to the

following replacement of the diffusion probability density:

P (x, t)→ P (x, t) e−t/τdw . (1.21)

Furthermore, the spatial dependence of the noise correlation function

(1.13) acquires an additional dissipation term in the denominator. Thus,

in contrast to the isolated case, Q(x) now satisfies the Laplace transform

of the diffusion equation, given by[
1

L2
dw

−∆

]
Q(x) = δ(x) , (1.22)

where Ldw =
√
τdwD. For a ring with circumference L we obtain

Q(x) =
Ldw

2

cosh
(

[L− 2|x|]/2Ldw

)
sinh(L/2Ldw)

. (1.23)

We can expand Eq. (1.23) for the almost isolated ring in powers of

τTh/τdw � 1:

Q(x) ≈ C − |x|
2

(
1− |x|

L

)
+O

(
τTh

τdw

)
, (1.24)

where the x-independent first term, C = Lτdw/τTh, describes the contribu-

tion of the zero mode. As expected, see the discussion after Eq. (1.18), it

diverges in the limit τTh/τdw → 0.

Having described the diffuson in our model of the almost isolated ring,

we can proceed by calculating the closed random walk average (crw) of

Eq. (1.24). We will see below that we need to consider the random walk
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average with respect to closed paths with a specific winding number n only.

For an isolated ring, using Eq. (1.20), it can be written as

〈Q〉crw(t12, n) =

∫ L

0

d2x1,2Q(x12)Pcrw(x12, t12, n) , (1.25)

with

Pcrw(x12, t12, n) =
∑

i+j+k=n

Pi(x01, t1)Pj(x12, t21)Pk(x20, t− t2)

Pn(0, t)
, (1.26)

where we used the notation xαβ = xα − xβ and tαβ = tα − tβ . Obviously,

the replacement (1.21) does not affect this averaging procedure, so that

it remains valid in our model of homogeneous dissipation. Note that the

expression (1.26) depends in fact only on x12 and not on x0, as can be

verified by integrating both sides of the equation over x0 using the following

semi-group property in the ring:∫ L

0

dx2 Pl(x12, t1)Pm(x23, t2) = Pl+m(x13, t1 + t2) . (1.27)

Doing the average of Eq. (1.23) according to Eq. (1.25), we finally obtain

〈Q〉crw(t12, n) = C − L

2

∞∑
k=1

cos(2πknu)

(πk)2
e−(2πk)2 ETh t12(1−t12/t) . (1.28)

It follows that a finite dissipation rate does not affect the decay function to

leading order in τTh/τdw.

For the Cooperon, an expansion similar to Eq. (1.20) can be done. In

addition to that, the dependence of the Cooperon on an external magnetic

field changes due to the ring geometry. It not only leads to the suppres-

sion of the Cooperon at long times, but also, due to the Aharonov-Bohm

effect, to Altshuler-Aronov-Spivak oscillations17 of the WL-correction, see

Fig. 1.2(b). Combining these remarks with Eq. (1.5) and inserting Eq. (1.3)

with d = 1, we write the Cooperon in our model as

C(t) =

+∞∑
n=−∞

e−(nL)2/4Dt

√
4πDt

e−t/τH−t/τdw−Fn(t)einθ , (1.29)

where θ = 4πφ/φ0 and φ = π(L/2π)2H is the flux through the ring (φ0 =

2πc/e is the flux quantum). Note that the decay function F is now a

function of n: Since we used an expansion in winding numbers n, we should

consider the phase (1.8) acquired by paths with the winding number n only.

Thus, the crw-average in Eq. (1.9) has to be performed with respect to paths

with given winding number n only, as anticipated in Eq. (1.25).
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P (q, ω)

Fig. 1.3. Typical diagram from the expansion of the Cooperon self energy. The shaded

area denotes impurity lines, described by the diffusion propagator Eq. (1.31). The upper

solid lines correspond to a retarded electron Green’s function and the lower to an ad-
vanced (or vice versa). Wiggly lines denote electron interactions, described by Eq. (1.16).

1.5. Qualitative picture from the perturbative expansion of

the Cooperon

In our previous paper1 we showed how all the regimes of the dephasing

time in an isolated ring can be understood qualitatively from the influ-

ence functional picture. In particular, we demonstrated how 0D dephasing

emerges from the assumption of a noise field that is effectively ”frozen” on

the time scale τTh (since |ω| ' T � ETh), leading to a drastically re-

duced dephasing rate. The qualitative behavior of τϕ also follows from the

standard perturbative expression for the Cooperon self-energy. Such self-

energy diagrams are of the type shown in Fig. 1.3 and were first evaluated

in Ref. [21]. This diagram and its complex conjugate give contributions to

the dephasing time of the form

1

τϕ
∝
∫

dω

∫
dq V V (q, ω) Re[P (q, ω)] , (1.30)

where the diffuson P (q, ω) is given by the Fourier transform of Eq. (1.19):

P (q, ω) =
1

Dq2 − iω
. (1.31)

We have already mentioned that large energy transfers are suppressed ac-

cording to Eq. (1.15) leading to an upper cutoff at T of the frequency

integration. Furthermore, it was shown in Refs. [26,27] that vertex contri-

butions to these self-energy diagrams cure the infrared divergences in the

frequency integration, leading to a cutoff at 1/τϕ. Such fluctuations are

simply too slow to influence the relevant paths. Note that in contrast to

the perturbative treatment presented in this section, the path integral cal-

culation leading to the expression Eq. (1.9) for the decay function is free of
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these IR divergences. In fact, it was shown that the first term of Eq. (1.9)

corresponds, when compared to a diagrammatic evaluation of the Cooperon

self-energy, to the so-called self-energy contributions (shown in Fig. 1.3),

while the second term corresponds to the so-called vertex contributions.

In the ring geometry, the diffuson has quantized momenta and the q = 0

mode can not contribute. For a qualitative discussion we may take this into

account by inserting a lower cutoff 1/L of the momentum integration.

Taking into account the above remarks, we can estimate the dephasing

time as

1

τϕ
∝ T

g1L

∫ T

1/τϕ

dω

∫ ∞
1/L

dq
D

(Dq2)2 + ω2
. (1.32)

Eq. (1.32) illustrates succinctly that the modes dominating dephasing lie

near the infrared cutoff (ω ' τ−1
ϕ or ETh) for the diffusive or ergodic

regimes, but near the ultraviolet cutoff ω ' T for the 0D regime, which is

why, in the latter, the broadening of δT (t) becomes important. Performing

the integrals in Eq. (1.28) and solving for τϕ selfconsistently, we find three

regimes:

(1) The diffusive regime, for τT � τϕ � τTh, with

τϕ ∝ (g1/
√
EThT )2/3 ; (1.33)

(2) the ergodic regime, for τT � τTh � τϕ, with

τϕ ∝ g1/T ; (1.34)

(3) and the 0D regime, reached at τTh � τT � τϕ, with

τϕ ∝ g1ETh/T
2 . (1.35)

Here, τT =
√
D/T is the thermal time. Expressing (1.35) in terms of the

level spacing δ = ETh/g1 we find τϕδ ∝ E2
Th/T

2. This ratio is � 1 in

the 0D regime, implying that dephasing is so weak that the dephasing rate

1/τϕ is smaller than the level spacing.

1.6. Results for the Cooperon decay function

For a systematic analysis of the Cooperon decay function, we rewrite

Eq. (1.9) in terms of an integral over the dimensionless variable u = t12/t:

Fn(t) =
4πTt

g1

∫ 1

0

du z(u) qn(u) , (1.36)
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t

∼− t
τT

1� t/τT

Fig. 1.4. Functions qn=0(u) (left panel) defined in Eq. (1.38) and z(u) (right panel)

defined in Eq. (1.37).

where the kernel

z(u) = −2πTt (1− u)w(πTtu) +

∫ πTtu

−πTtu
dv w(v) (1.37)

depends on the parameter tT = t/τT , and the dimensionless crw-averaged

diffuson

qn(u) =
〈Q〉crw(ut)− C

L
= −1

2

∞∑
k=1

cos(2πknu)

(πk)2
e−(2πk)2 (t/τTh)u(1−u) ,

(1.38)

depends on t/τTh, see Eq. (1.28). Note that we can add or subtract an

arbitrary number from qn(u) without changing the result, since constant

terms in qn(u), describing the zero mode, do not contribute to dephasing,

because of the following property of z(u):∫ 1

0

du z(u) = 0 . (1.39)

Both functions, Eq. (1.37) and Eq. (1.38), are illustrated in Fig 1.4 in all

relevant limiting cases. Note that in the regime of WL we always have

τT � t. In the opposite regime the interaction correction to the conductiv-

ity (Altshuler-Aronov correction) originating from the Friedel oscillations

dominate,48 which we do not consider here.

We proceed with an asymptotic evaluation of Eq. (1.36). For large

t/τTh, qn(u) is non-zero (' 1
12 ) only in the intervals 0 < u < τTh/t and
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1− τTh/t < u < 1, see Fig. 1.4. For small t/τTh and n = 0 we can use the

expansion

qn=0(u) ≈ 1

12
− 1√

π

√
t

τTh
(u(1− u)) +

t

τTh
(u(1− u)) . (1.40)

For larger n the exponential function in Eq. (1.38) can be expanded since

the sum converges at k ' 1.

For τT � t, z(u) is large (∼ −t/τT ) in the interval 0 < u < τT /t

and z(u) ≈ 1 otherwise. Thus, it will be convenient to decompose z(u) =

z + z̃(u) into a constant part z = +1 and a peaked part z̃(u) = z(u) − 1.

For contributions of the peaked type one observes that

∫ 1

0

du z̃(u)us =


−1, s = 0 ;

−
√

τT
t

√
2π
4 |ζ

(
1
2

)
|, s = 1/2 ;

− τTt , s = 1 .

(1.41)

We identify the following 3 regimes:

Diffusive regime τT � t � τTh and n = 0: Here we can use

the expansion Eq. (1.40). The constant term does not contribute, due

to Eq. (1.39). The main contribution to the integral comes from values of u

where z(u) ≈ 1. Thus, we decompose z(u) = z + z̃(u) as suggested above.

The leading result and corrections ∝
√
t/τTh due to the second and third

term in Eq. (1.40) stem from z. Corrections ∝
√
t/τT can be calculated

with the help of Eq. (1.41) with s = 1/2 from the z̃(u) part. In total we

obtain for n = 0:

Fn=0(t) =
π3/2
√
ETh

2g1
Tt3/2

(
1 +

23/2ζ
(

1
2

)
π

1√
tT
− 4

3
√
π

√
t

τTh

)
. (1.42)

Diffusive regime τT � t � τTh and |n| > 0: For winding numbers

larger than zero, we expand the exponential function in (1.38). In contrast

to the case of n = 0, the leading result comes here from the peaked part

z̃(u). After expanding the exponential function and doing the sum over k,

we can apply Eq. (1.41) with s = 0 and s = 1 to find the leading result and

a correction ∼ τT /t. For z, we observe that the first term vanishes since

the integral is over n full periods of cos. The second term of the expansion

gives a correction ∼ t/τTh and in total for 0 < |n| � t/τT :

Fn(t) =
π

3g1
Tt

(
1− 2

n2

t

τTh
− 6

πn

τT
t

)
. (1.43)
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Note that in the diffusive regime, winding numbers |n| > 0 only contribute

weakly to the conductivity, see Eq. (1.29).

Ergodic regime τT � τTh � t: In this regime, the main contribution

to the conductivity will not depend on n, since we may neglect the cos-

term of qn(u) as long as |n| � t/τTh. This restriction on n is justified by

the fact that large values of |n| give contributions smaller by a factor of

∼ exp(−n2t/τTh), see Eq. (1.29).

Again, we decompose z(u) = z + z̃(u). For the z̃(u) part, we use the

expansion of qn=0(u), Eq. (1.40), where the constant term 1/12 will yield

the main result. Corrections due to the second term of Eq. (1.40) are

∼
√
τT /τTh, because of Eq. (1.41) with s = 1/2. For z, we do the integral

over u directly using
∫ 1

0
du exp(−xu(1−u))

x→∞−−−−→ 2/x. From this we obtain

a correction ∼ τTh/t and in total

Fn(t) =
π

3g1
Tt

(
1− 6√

2π

√
τT
τTh
− 1

30

τTh

t

)
. (1.44)

It is not surprising that the case |n| > 0 in the diffusive regime gives,

to leading order, the same results as all n of the ergodic regime (compare

Eq. (1.44) to (1.43)), since higher winding numbers are by definition always

ergodic: The electron paths explore the system completely.

0D regime τTh � τT � t: In this regime, qn(u) is more sharply peaked

than z(u), since τT /t � τTh/t. This means that the electron reaches the

fully ergodic limit (where q(u) = const and no dephasing can occur) be-

fore the fluctuating potential changes significantly. Thus, the potential is

effectively frozen and only small statistical deviations from the completely

ergodic limit yield a phase difference between the two time-reversed trajec-

tories. The width of the peak of z(u) becomes unimportant, instead, we

can expand z(u) around u = 0 and u = 1. Furthermore, we can expand the

argument of the exponential function in qn(u) and then extend the integral

to +∞ and scale u by kπ:

Fn(t) =
4πTt

g1

∫ ∞
0

du

[
2πTt

3
− 1− 4π3

15
(tT )3u2

] ∞∑
k=1

cos(2nu)

(kπ)3
e−4kπEThtu

(1.45)

(the −1 in the integrand stems from the region u ≈ 1). Now, assuming

|n| � t/τTh, the integral over u can be done and then the sum over k
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evaluated. The result is

Fn(t) =
π2τTh

270 g1
T 2t

(
1− 3

2π

1

Tt
− π2

210

T 2

E2
Th

)
. (1.46)

Note that, as mentioned before, the precise form of the shape of z̃(u),

corresponding to the broadened delta function Eq. (1.17), matters only in

0D regime.

To summarize, we found the following regimes:

Fn(t) '



π3/2

2g1

√
EThTt

3/2 ,τT � t� τTh, n = 0; (1.47a)

πTt

3g1
, τT � t� τTh, |n| > 0; (1.47b)

πTt

3g1
, τT � τTh � t, all n; (1.47c)

π2

270 g1

T 2t

ETh
, τTh � τT � t, all n. (1.47d)

Note that the crossover temperatures where τdiff
ϕ ' τ erg

ϕ or τ erg
ϕ ' τ0D

ϕ ,

namely c1g1ETh or c2ETh, respectively, involve large prefactors, c1 =

27/4 ' 7 and c2 = 90/π ' 30. This can be seen in a numerical evaluation

of Eq. (1.36), which is presented in Fig. 1.6. In particular, one observes

that the onset of the 0D regime is already at temperatures smaller than

30ETh, i.e. well above ETh. This should significantly simplify experimental

efforts to reach this regime.

1.7. Correction to the conductance

Inserting Eq. (1.29) into Eq. (1.4), we obtain the temperature dependent

correction to the conductance

∆g(T, φ) =− 4L

g1τTh

∫ ∞
0

dt

+∞∑
n=−∞

(1.48)

e−(n/2)2τTh/t

√
4πDt

e−t/τH−t/τdw−Fn(t) cos(4πnφ/φ0) .

The resulting value of |∆g(T, φ)| increases with decreasing T in a manner

governed by τϕ. We recall that in the high temperature regime dephasing
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Fig. 1.5. Dephasing time τϕ extracted from Eq. (1.36) and Fn(τϕ) = 1 for g1 = 100.

(a) Shows the result for zero winding number n = 0 and (b) for n = 1. For winding

numbers |n| > 0 the diffusive regime, τϕ ∼ T−2/3, is absent.

can be relatively strong, so that one can neglect effects of dissipation (i.e.

particle escape out of the ring) and of the external magnetic field on the

Cooperon if τϕ(T ) � min[τH , τdw]. In the diffusive regime, τϕ � τTh,

∆g(T, φ) is dominated by the trajectories with n = 0 since the contribution

of the trajectories with |n| ≥ 2
√
t/τTh ∼

√
τϕ/τTh is exponentially small.

Thus we arrive at:20

|∆g| ' 2

g1

√
τϕ
τTh
∝
(
ETh

g2
1T

)1/3

. (1.49)

In contrast, the trajectories with large winding number contribute in the er-

godic regime, τT � τTh � τϕ, therefore, converting the sum to the integral∑
n exp(−(n/2)2τTh/t) '

∫
dn exp(−(n/2)2τTh/t) ∼

√
t/τTh, Eq.(1.48)

yields24,25

|∆g| ' 4

g1

τϕ
τTh
∝ ETh

T
. (1.50)

Dephasing due to electron interactions becomes weak in the 0D regime

and, therefore, the situation drastically changes at the crossover from the
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ergodic regime to the 0D one. In particular, we find τϕ � g1τTh, see

Eq.(1.47c) and as far as g1 is large, one may enter a low temperature regime

where τϕ ≥ τdw. In this case, the temperature independent parts of the

Cooperon decay must be taken into account. In our model, with decreasing

T , the growth of |∆g(T, φ)| saturates towards |∆g(0, φ)| once τϕ increases

past min[τH , τdw] (a more quantitative consideration is given in the next

section). Nevertheless, the temperature dependence of ∆g is still governed

by τϕ(T ) and we can single it out by subtracting the conductance from its

limiting value at T = 0. Then the difference

|∆g(0, φ)| − |∆g(T, φ)| ' 4

g1

τ2
dw

τThτϕ
∝
(
τdwT

g1

)2

(1.51)

shows T 2-behaviour in the 0D regime.

1.8. Suggested Experiments

Our theoretical predictions should be observable in real experiments, pro-

vided that several requirements are met. We list these conditions in accor-

dance with their physical causes, focusing below on the example of a ring

prepared from a quasi-1D wire of width LW on a 2D surface.

1.8.1. Validity of theoretical predictions

1D diffusion: We have used the theory of 1D diffusion which calls for

the following inequalities

L� (`, LW )� λF ; (1.52)

λF is the Fermi wavelength.

Weak localization regime: Eq.(1.48) describes the leading weak lo-

calization correction to the conductance. Subleading corrections can be

neglected if (a) the classical conductance of the ring is large

g1 ∝ (`/L)(LW /λF)� 1 ; (1.53)

and (b) the leading correction to the conductivity is smaller than its classical

value, |∆g| < 1. The former condition can be assured by a proper choice of

the ring geometry and of the material while, in the low temperature regime,

the latter is provided by finite dissipation.
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Time-/spatial-dependence of the noise correlation function: We

have used the noise correlation function (1.16) where dependences on time-

and space-coordinates are factorized. This simplified form requires the

following condition (see Section 1.3):

2νDq2 � (Dq2 − iω)/V (q) . (1.54)

In the 0D regime we can roughly estimate typical values, Dq2 ∼ ω ∼ ETh,

arriving at the inequality

νV (q)� 1 . (1.55)

For a quasi-1D wire on a 2D structure, ν and V can be written as (restoring

~)

ν2D =
me

2π~2
, (1.56)

where me is the electron mass, and

V1D(q) =
e2LW
4πε0

| ln(L2
W q

2)| (1.57)

(in SI units). Thus, (1.55) implies that LW cannot be taken to be overly

small. Inserting material parameters, however, this condition turns out not

to be very restrictive, as long as ν2D is reasonably large.

Contacts (dissipation and absence of the Coulomb blockade):

The presence of contacts, through which electrons can escape into leads, is

mimicked in our model through the homogeneous dissipation rate 1/τdw.

We have assumed weak dissipation:

τTh . τdw . (1.58)

This ensures that the winding trajectories with |n| ≥ 1, responsible for

AAS oscillations, are relevant. On the other hand, τdw cannot be taken

to be arbitrarily large, since the growth of the WL correction to the con-

ductance with decreasing temperature is cut off mainly due to this tem-

perature independent dissipation, and this cutoff has to occur sufficiently

soon that the relative correction remains small, else we would leave the

WL regime. Choosing the zero temperature limit, somewhat arbitrary, as

|∆g(0, φ)| = 1/2, we find from Eq. (1.50)

τdw/τTh . g1/8 . (1.59)
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We note that our assumptions imply τϕ � g1τTh > τdw in the 0D regime,

i.e., dephasing due to electron interactions is weak (each electron contribut-

ing to transport through the ring is dephased only a little bit during the

course of its stay in the ring). Nevertheless, we demonstrate below (see

Fig. 1.8) that the T 2 -dependence of the conductance should be visible in

real experiments.

To choose a suitable value for the conductance at the contacts, we esti-

mate τdw/τTh ' g1/gcont, which results in

8 . gcont . (1.60)

We suppose that the contacts are open and have a maximal transmission

per channel at the contact

Tcont = 1 ⇒ gcont = TcontN = N , (1.61)

(N is the number of transmitting reflectionless channels at the contact).

This choice allows one to maximize the WL effect and, simultaneously, to

minimize any Coulomb blockade effects, which we have neglected.

1.8.2. Possible experimental setup

Temperature range: The relevant temperature range, [Tdil, Tph], is lim-

ited from below by dilution refrigeration (Tdil ' 10mK) and from above by

our neglect of phonons (Tph ' 5K). Furthermore, the ring should be small

enough that c2ETh & Tdil; c2ETh is the upper estimate for the temperature

of the crossover to the 0D regime, see the discussion after Eq. (1.47).

Contributions from the leads: We have considered an ideal situation

and calculated the Cooperon decay function for the isolated ring, where

the finite dissipation rate 1/τdw does not affect the decay function up to

leading order in τTh/τdw. This means that the Cooperons are assumed to

live completely inside the ring and not influenced by dephasing in the leads,

i.e. it corresponds to the situation shown in Fig. 1.6(a).

In real experiments, the correction to the conductance, ∆g, is sensitive

to dephasing in the leads because Cooperons exist which either belong to

the lead (e.g. the situation shown in Fig. 1.6(c)) or extend over both the

ring and the lead (Fig. 1.6(b))49. (Note that in contrast to Ref. [51] or

Ref. [49], we do not consider Cooperons with a Hikami-box directly at the

contact, since we chose Tcont = 1.)

Contributions of such trajectories might mask the signatures of de-

phasing in the confined region (the ring). This concern also applies to
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Fig. 1.6. (a) a ”ring”-Cooperon, confined entirely to the ring; (b) a ”cross”-Cooperon,
extending from the ring to the lead and back; (c) a ”lead”-Cooperon, confined entirely

to the leads.

quantum dots connected to leads (cf. the τϕ ∝ T−1-behavior observed in

Refs. [31–33]), or finite-size effects in a network of disordered wires,35 where

paths encircling a given unit cell might spend significant time in neighboring

unit cells as well (cf. T−1/3-behavior observed in Ref. [35] at τϕ/τTh ≥ 1).

We will now argue that if the lead dimensionless conductance is larger

than the contact conductance50

glead � gcont = N , (1.62)

then the ring-Cooperon yields the dominating contribution to the WL cor-

rections. Let us focus on the ergodic and 0D regimes, for which τϕ � τTh,

so that that the Cooperon ergodically explores the entire ring. Then the

probability to find a closed loop in the ring is proportional to the dwell

time, pring ∝ τdw/ν, which is ∝ 1/gcont. Thus we can estimate:

• the probability to enter the ring as pin ∼ gcont/glead;

• the probability to find a closed loop in the ring as

pring ∼ (τdw/ν) ∼ 1/gcont;

• the probability to exit the ring as pout ∼ (τdw/ν)gcont ∼ 1;

• the probability to find a closed loop in the diffusive lead as

plead ∼ 1/glead

Using these estimates, the probabilities to find a ring-, cross-, or lead-

Cooperon are

PC−ring ∼ pin × pring × pout ∼ 1/glead ; (1.63)

PC−cross ∼ pin × pring × pout × pin × pout ∼ gcont/g
2
lead ; (1.64)

PC−lead ∼ plead × pin × pout ∼ gcont/g
2
lead , (1.65)

respectively. Thus we arrive at:

PC−lead ∼ PC−cont ∼ PC−ring × gcont/glead � PC−ring , (1.66)
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Fig. 1.7. (a) The WL correction |∆g(T, φ)| (solid lines), its envelope |∆gen(T, φ)|
(dashed lines) and (b) their difference ∆g = |∆gen|−|∆g|, plotted as function of magnetic
flux 2φ/φ0, for five different temperatures.

which proves that the ring-Cooperon dominates the WL correction for our

choice of parameters if glead � gcont.

Since the 0D regime implies weak dephasing it is highly desirable to im-

prove the “signal-to-noise” ratio by filtering out contributions which do not

show 0D dephasing. This can be done35 by constructing from |∆g(T, φ)| its
nonoscillatory envelope |∆gen(T, φ)|, obtained by setting θ = 0 in Eq. (1.29)

while retaining τH 6= 0, and studying the difference

∆g(T, φ) = |∆gen(T, φ)| − |∆g(T, φ)| . (1.67)

This procedure is illustrated in Fig. 1.7. The lead-Cooperons do not have

the Aharonov-Bohm phase and are eliminated by this filtering procedure.

Unfortunately, cross-Cooperons cannot be filtered in this manner, since

they do experience the Aharonov-Bohm phase. Nevertheless, if the con-

dition gcont � glead holds, ∆g is completely dominated by paths residing

only in the ring in accordance with the estimate Eq. (1.66).

1.8.3. Numerical results for 2D GaAs/AlGaAs heterostruc-

tures

All above-mentioned constraints can be met, e.g., with rings prepared from

a 2D GaAs/AlGaAs heterostructure. In such systems, diffusive behavior
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emerges from specular boundary scattering of the electrons, see Ref. [46],

leading to the following dephasing time due to the external magnetic field:

τH = 9.5(c/eH)2 × (l/DL3
W ) . (1.68)

Furthermore, inserting Eq. (1.56) into the 2D conductivity σ2D = 2e2ν2DD

with D = vF`, we obtain the corresponding dimensionless conductance:

g1 =
h

e2

σ2DLW
L

= 4π
LW `

λFL
. (1.69)

A typical Fermi wavelength in a GaAs/AlGaAs heterostructure is λF ≈
30nm (vF ≈ 2.5 · 105m/s).28,35,39,47 Thus, by suitably choosing L, LW
and ` we can adjust g1 and ETh to make all regimes of the dephasing time

accessible.

Numerical results for |∆g| and ∆g, obtained from Eq.(1.4) using exper-

imentally realizable parameters, are shown in Figs. 1.7 and 1.8 for several

combinations of these parameters. The regime where ∆g exhibits diffusive

T−1/3 behavior (7g1ETh � T � Tph) is visible only for our smallest choices

of both g1 and ETh (Fig. 1.8(a), heavy dashed line). AAS oscillations in

|∆g| and ∆g (Fig. 1.7), which require τTh � τϕ, first emerge at the crossover

from the diffusive to the ergodic regime. They increase in magnitude with

decreasing T , showing ergodic T−1 behavior for 30ETh � T � 7g1ETh

(Figs. 1.8(a),(b)), and eventually saturate towards their T = 0 values,

with ∆g(0, φ) − ∆g(T, φ) showing the predicted 0D behavior, ∝ T 2, for

T . 5ETh, see Fig. 1.8(c).

1.9. Conclusions

For an almost isolated disordered quasi-1D ring with T � ETh, the T -

dependence of the dephasing time has been known to behave as τϕ ∝ T−2/3

(Ref. [20]) or ∝ T−1 (Refs. [24,25]) in the diffusive or ergodic regimes,

respectively. Here we showed how it crosses over, for T � 30ETh, to

τϕ ∝ T−2, in agreement with the theory of dephasing in 0D systems

(Ref. [2]). This crossover manifests itself in both the smooth part of the

magnetoconductivity and the amplitude of the AAS oscillations. Impor-

tantly, the latter fact can be exploited to decrease the effects of dephasing

in the leads, by subtracting from the magnetoconductivity its smooth en-

velope. While we did not give an exhaustive study of all contributions to

dephasing in the connected ring, we were able to show that the leading

contribution results only from trajectories confined to the ring. Thus, an

analysis of the T -dependence of the AAS oscillation amplitude may offer
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(L,LW)=(40,2.4)µm,ETh=5.0mK

Fig. 1.8. T -dependence of (a) the WL correction at zero field, |∆g(T, 0)| and (b) at
finite field with envelope subtracted, ∆g(T, φ1); (c) the difference ∆g(0, φ1)−∆g(T, φ1),

which reveals a crossover to T 2-behavior for T � 30ETh. The flux φ1, which weakly

depends on T , marks the first maximum of ∆g(T, φ), see inset of Fig. 1.7. [This figure

is reproduced from Ref. [1]]

a way to finally observe, for T . 5ETh, the elusive but fundamental 0D

behavior τϕ ∼ T−2. Its observation, moreover, would allow quantitative

experimental tests of the role of temperature as ultraviolet frequency cut-

off in the theory of dephasing. An interesting challenge for future works

consists in a more realistic model of the connection to the leads. Work on

the model of an N -channel ring attached via two arms with fewer channels

to absorbing boundaries is currently in progress.52
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5. M. Büttiker, Y. Imry, and M. Ya. Azbel, Phys. Rev. A 30, 1982 (1984).
6. Y. Gefen, Y. Imry, and M. Ya. Azbel, Phys. Rev. Lett. 52, 129 (1984).
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