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We show how a quantum Ising spin chain in a time-dependent transverse magnetic field can be

simulated and experimentally probed in the framework of circuit QED with current technology. The

proposed setup provides a new platform for observing the nonequilibrium dynamics of interacting many-

body systems. We calculate its spectrum to offer a guideline for its initial experimental characterization.

We demonstrate that quench dynamics and the propagation of localized excitations can be observed with

the proposed setup and discuss further possible applications and modifications of this circuit QED

quantum simulator.
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The promising idea of tackling complex quantum many-
body problems by quantum simulations [1,2] has become
even more compelling recently, due to the widespread
current interest in nonequilibrium dynamics. Indeed,
experiments with cold atoms in optical lattices [3–6] and
ions [7–10] have already made impressive progress in this
regard. At the same time, the capabilities of scalable,
flexible solid-state platforms are developing rapidly. In
particular, circuit quantum electrodynamics (cQED) archi-
tectures of superconducting artificial atoms and microwave
resonators [11–19] are now moving toward multiatom,
multiresonator setups with drastically enhanced coherence
times, making them increasingly attractive candidates for
quantum simulations [20]. Here, we propose and analyze a
cQED design that simulates a quantum transverse-field
Ising chain with current technology. Our setup can be
used to study quench dynamics, the propagation of local-
ized excitations, and other nonequilibrium features in a
field theory exhibiting a quantum phase transition (QPT)
[21] and based on a design that could easily be extended to
break the integrability of the system.

The present Letter takes a different path than the pro-
posals for simulating Bose-Hubbard-typemany-body phys-
ics in cavity arrays, which might be also realizable in cQED
[20,22–26]. It is based on a possibly simpler concept—
direct coupling of artificial atoms—that naturally offers
access to quantum magnetism. The transverse-field Ising
chain (TFIC) is a paradigmatic quantum many-body sys-
tem. It is exactly solvable [27,28] and thus serves as a
standard theoretical example in the context of nonequilib-
rium thermodynamics and quantum criticality [21,29–34].
Our proposal to simulate the TFIC and its nonequilibrium
dynamics might help to mitigate the lack of experimental
systems for testing these results. Moreover, the experimen-
tal confirmation of our predictions for various nonequilib-
rium scenarios in this integrable many-body system would

serve as an important benchmark and allow one to proceed
to variations of the design that break integrability or intro-
duce other features.
Implementation of the TFIC.—A charge-based artificial

atom (such as the Cooper-pair box or the transmon) [35] in
a superconducting microwave resonator can be understood
as an electric dipole (with dipole operator �x) that couples
to the quantized electromagnetic field in the resonator [36].
Consider the system of Fig. 1, at first, without resonator
B. Only the first artificial atom couples to resonator A.
However, all atoms couple directly (not mediated by a
quantized field) to their neighbors via dipole-dipole cou-

pling / �i
x�

j
x (for details, see Ref. [37]). Coupling of this

type has already been demonstrated with two Cooper-pair
boxes [38] and two transmons [19]. Since this interaction is
short ranged, we model our system by

H ¼ !0ðayaþ 1=2Þ þ gðay þ aÞ�1
x þH I; (1)

where H I is the Hamiltonian of the TFIC,

H I ¼ �

2

XN

j¼1

�j
z � J

XN�1

j¼1

�j
x�

jþ1
x : (2)

FIG. 1 (color online). Circuit QED implementation of the Ising
model with a transverse magnetic field. The dipole moments of
the artificial atoms tend to align. Resonator A (B) facilitates
initialization and readout of the first (Nth) artificial atom by
standard circuit QED techniques.
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Here, ay generates a photon with frequency!0, and�
j
x=z is

a Pauli matrix. That is, we consider the artificial atoms as
two-level systems (qubits). This is justified even for
weakly anharmonic transmons since the experiments pro-
posed below involve only low atomic excitation probabil-
ities or well controllable excitation techniques (� pulses).
Qubit 1 and the resonator couple with strength g. The qubit
level spacing �> 0 is tunable rapidly (� 1 ns) via the
magnetic flux through the qubits’ SQUID loops [11–14]. It
corresponds to the transverse magnetic field in the usual
TFIC. In our geometry, the qubit-qubit coupling strength J
is positive (ferromagnetic; the antiferromagnetic coupling
J < 0 arises by rotating each qubit in Fig. 1 by 90� and is
discussed in Ref. [37]). Estimates based on the typical
dimensions of a cQED system yield J=2�� 100 MHz.
Interdigitated capacitors between the qubits might signifi-
cantly increase J. In general, tuning� will also affect J in
a way that depends on the tuning mechanism and on the
fundamental qubit parameters [37]. Using standard tech-
nology, upon variation of the magnetic flux, J / � for
transmons, whereas, for Cooper-pair boxes, J is indepen-
dent of �. Resonator A facilitates the initialization and
readout of qubit 1 (with standard techniques [11]).
Resonator B would allow one to measure end-to-end cor-
relators. However, for simplicity, we consider a system
with one resonator unless otherwise noted. We mention
that the proposed setup should also be implementable
using the novel, high-coherence 3d cQED devices [39].
Superconducting flux and phase qubits [35] can also be
coupled to implement H I and related Hamiltonians
[15,17]. For different proposals on the implementation of
and mean-field-type experiments with the TFIC in cQED,
see Refs. [40,41], respectively.

In our calculations [37], we frequently use the spin-free-
fermion mapping for H I from Refs. [27,28]. It yields

H I ¼
P

k�kð�y
k�k � 1=2Þ, where �y

k generates a fermion

of energy �k ¼ 2J
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �2 � 2� cosk

p
and � ¼ �=2J is

the normalized transverse field. The allowed values of k
satisfy sinkN ¼ � sinkðN þ 1Þ. For N ! 1, H I under-
goes the second order QPT at � ¼ 1 from a ferromagnetic
phase (� < 1) with long-range order in �x to a disordered,
paramagnetic phase (for details, see Refs. [21,27,28,37]).

Spectrum of the system.—An initial experiment would
likely characterize the setup by measuring the transmission
spectrum S of the resonator as a function of probe fre-
quency! and qubit frequency�. For definiteness, we now
assume that J is fixed and that the transverse field
� ¼ �=2J is tunable via �, as is the case for Cooper-
pair boxes. A system with standard transmons can be
shown to be confined to the paramagnetic phase (with fixed
� > 1), but its spectrum as a function of ! and J / �
otherwise displays the same features [37]. To calculate S,
we first focus on the spectrum of the bare TFIC, ~�ð!Þ ¼R
dtei!th�1

xðtÞ�1
xð0Þi. It shows at which frequencies a field

coupled to �1
x can excite the chain. Assuming g=!0 � 1,

we then approximate the chain as a linear bath, coupled to
the resonator: We replace it by a set of harmonic oscillators
with the spectrum ~�ð!Þ of the TFIC. This allows us to
compute S. Our calculations are for zero temperature.
Except near the QPT, where H I becomes gapless, this is
experimentally well justified.
For finiteN, the calculated spectrum ~�ð!Þwould consist

of discrete peaks. In an experiment, they would be broad-
ened by decay and, for large N, the measured spectrum
would be continuous. This can be modeled by taking
N ! 1 in our calculations. In that case,

~�ð!Þ ¼ 2��ð!Þ�ð1��Þð1��2Þþ 4�

!
Re

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� cos2kð!Þ

q

(3)

for ! � 0, and ~�ð!< 0Þ ¼ 0. Here,�ðxÞ is the Heaviside
step function, and coskð!Þ ¼ ½1þ �2 � ð!2JÞ2�=2�. The

delta function for � < 1 is due to the nonzero mean value
of Reh�1

xðtÞ�1
xð0Þi in this phase. We plot ~�ð!Þ for several �

in Fig. 2(a). For � > 1 (� < 1), ~� has a width of 4J (4J�),
the bandwidth of the �k. This might be helpful to measure
J. At � ¼ 1, ~� becomes gapless and, thus, carries a clear
signature of the QPT. The loss of normalization for
� ¼ 0:5 is compensated by the delta function in (3). This
is required by a sum rule for ~� and can be understood: In
the ordered phase, the ground state j0i of the TFIC
becomes similar to a �x eigenstate. Thus, driving via �1

x

is less efficient in causing excitations out of j0i, but a static
force on �1

x will change the energy of j0i. We note that, for
all �, ~�ð!Þ has its maximum where the band �k has zero
curvature (and maximum slope). Thus, most �k excitations

FIG. 2 (color online). Spectrum of the system. (a) Spectrum
~�ð!Þ ¼ R

dtei!th�1
xðtÞ�1

xð0Þi of an isolated transverse-field

Ising chain for N ! 1 and normalized transverse fields � ¼
�=2J ¼ 4, 1.2, 1, 0.5. (b) Spectrum S of a resonator coupled to a
TFIC (as in Fig. 1), plotted vs � and ! (for N ! 1). The
parameters used are g ¼ 0:12, J ¼ 0:1, and � ¼ 10�4 (in units
of !0). For better visibility of the features, values >3:8 are
plotted in white. The dashed lines represent the excitation
energies of H for N ¼ 1. (c) S vs ! for � ¼ 3:9, 4.85, 6.1
(blue, red, and green lines, respectively). These lines correspond
to cuts along the arrows in (b).
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of the TFIC have a nearly uniform velocity v0 ¼
max½d�k=dk� (v0 ¼ 2J� for � < 1 and v0 ¼ 2J for
� > 1), which will be important below.

We obtain resonator spectrum Sð!Þ in terms of ~�ð!Þ,

Sð!Þ ¼ 4�ð!Þ½�þ g2 ~�ð!Þ�
½!2=!0 �!0 � 4g2�ð!2Þ�2 þ ½�þ g2 ~�ð!Þ�2 :

(4)

Here, �ð!2Þ denotes the principal value integral �ð!2Þ ¼
1=ð2�ÞR d�~�ð�Þ�=ð!2 ��2Þ and � is the full linewidth
at half maximum of the Lorentzian spectrum of the
uncoupled (g ¼ 0) resonator. Our calculation uses tools
that are explained, e.g., in Ref. [42]. It actually also applies
when the resonator couples to a different system, with
another spectrum ~�ð!Þ. We plot S as function of ! and �
in Fig. 2(b). For comparison, we also plot the resonances of
the Jaynes-Cummings model, as they have been observed
in numerous cQED experiments (dashed lines; case N ¼ 1
inH ). As long as the spectrum ~�ð!Þ of the chain does not
overlap the resonator frequency !0, there is a dispersive
shift analogous to the off-resonant single-qubit case. Here,
the chain causes only a small but broad side maximum and
hardly modifies the dominant Lorentzian [green and blue
lines in Fig. 2(c)]. If the chain comes into resonance, this
changes dramatically, and Sð!Þ takes on large values over a
region of width �4J. For our choice of parameters, Sð!Þ
develops a slightly asymmetric double-peak structure [red
line in Fig. 2(c)]. This is again reminiscent of the Jaynes-
Cummings doublet, but now the peaks are split by 4J rather
than 2g. We emphasize that the shape of the spectrum
on resonance depends significantly on the ratio g=J. The
larger g=J > 1, the closer the system resembles the single-
qubit case (corresponds to J ¼ 0). If g=J < 1, the double
peak vanishes and one observes a Lorentzian around !0

with width 2g2=J (for g2=J � �). This is because the
resonator irreversibly decays into the chain, whose inverse
bandwidth / 1=J sets the density of states at ! � !0 and
so determines the decay rate (for plots on both limiting
cases and for finite N, see Ref. [37]).

Propagation of a localized excitation.—Off resonance,
chain and resonator are essentially decoupled. In this
situation, our setup allows one to study nonequilibrium
dynamics in the TFIC. The resonator can be used to dis-
persively read out the first qubit. For measurements, this
qubit must be detuned (faster than 2�=J) from the chain so
that it dominates the dispersive shift of the resonator [11]
and decouples from the chain’s dynamics.

First, we focus on the nonequilibrium dynamics of the
chain after a local excitation has been created. As the
resonator couples only to one qubit, the initialization of
the system is easy. We assume that the chain is far in the

paramagnetic phase (� � 1). Hence, h�j
zi � �1 in its

ground state. By applying a fast (� 1 ns) � pulse, the first
spin of the chain can be flipped without affecting the state
of the other qubits (if J=2� � 1 GHz=2� or if the first

qubit is detuned from the others for initialization). We
model the state of the system immediately after the� pulse
by �1

xj0i, where j0i is the ground state of the TFIC. The

time evolution of the qubit excitations h�j
zi,

h�j
ziðtÞ ¼ h0j�1

xe
iH I t�j

ze�iH It�1
xj0i; (5)

is plotted in Fig. 3 for a chain with N ¼ 20 and � ¼ 8
(right panel). The experimentally measurable trace of
h�1

ziðtÞ is singled out on the left-hand side. Due to the
qubit-qubit coupling, the excitation propagates through
the chain, is reflected at its end, and leads to a distinct
revival of h�1

zi at JtR � N. Assuming J=2� ¼ 50 MHz,
we find tR � 64 ns for N ¼ 20, which is safely below
transmon coherence times. Note that the excitation
propagates with velocity v0 ¼ 2J. This is because it con-
sists of many excitations in k space, and most of them have
velocity v0.
Quench dynamics.—An appealing application of our

system would be to observe its nonequilibrium dynamics
after a sudden change of the transverse field � ¼ �=2J. By
using fast flux lines, changes of � have been achieved
practically instantaneously on the dynamical time scale of
a cQED system (without changing the wave function)
[12–14]. In our setup, such a change amounts to a (global)
quantum quench of � if J 6/ �. This condition can be
fulfilled by using qubits whose Josephson and charging
energies [35] have a ratio EJ=EC & 10 [37], that is,
Cooper-pair boxes or transmons slightly out of their opti-
mal parameter ratio [43]. In this regime, the tuning of J
with � is weak (vanishes for Cooper-pair boxes). Since it
would only lead to a rescaling of time by a factor �1, we
assume in the following that J is independent of � and
consider quantum quenches of � in our system. Quantum
quenches in the TFIC have been studied theoretically, e.g.,
in Refs. [30–33]. One usually assumes that for t < 0 the
system is in the ground state j0ia of the HamiltonianH I;a

FIG. 3 (color online). Propagation of a localized excitation.
Right: nonequilibrium time evolution of h�j

zi for all qubits j of a
transverse Ising chain of length N ¼ 20 in a normalized trans-
verse field � ¼ �=2J ¼ 8 (paramagnetic phase) after the first
spin has been flipped. Values >� 0:5 are plotted in white. Left:
separate plot of h�1

z i on the same time scale. This quantity can be
measured in the setup of Fig. 1.
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at some initial value �a ¼ �a=2J. At t ¼ 0, � is changed
to �b ¼ �b=2J, and the time evolution under the action of
H I;b is investigated.

In the following, we focus on the dynamics of the
experimentally easily accessible observable h�1

zi after
quenches within the paramagnetic phase. This corresponds
to our estimates for realistic values of J. The main differ-
ence of quenches involving the ferromagnetic phase would
be a modified dynamical time scale due to the different

value of v0. Figure 4 shows the magnetization h�j
ziðtÞ after

quenching � (center). In region I (see schematic plot,
right), the magnetization first increases and then oscillates
with decreasing amplitude. Here, it is virtually identical
with the overall magnetization of a cyclic TFIC with
N ! 1 calculated in Ref. [30] and would, for N ! 1,
approach a constant value. This is in line with predictions
from conformal field theory [32]. However, at t ¼ j=v0

and t ¼ ðN � jÞ=v0 (dashed red lines in the schematic
plot), where v0 ¼ 2J as before, the magnetization has
dips. They are followed (in regions II and III) by a relaxa-
tion similar as in region I to the same asymptotic value (see
Ref. [37] for a zoomed-in plot). Near the system bounda-
ries, the magnetization reaches and stays at this value for a
considerable time before undergoing a revival. A sharp
oscillation across the entire chain at T ¼ N=v0 subse-
quently decays. Revivals reoccur (quasi-)periodically
with period T (region IV), but this behavior is smeared
out for large times (not plotted). These phenomena are
reflected in the measurable observable h�1

ziðtÞ (left panel)
and take place on a time scale of �0:1 	s for N ¼ 30 and
J=2� ¼ 50 MHz.

Our results can be qualitatively understood in a simpli-
fying quasiparticle (QP) picture that has already been used
to calculate or interpret the (quench) dynamics of different
quantities in the TFIC [31–34]. In the paramagnetic phase,
the QPs correspond to spins pointing in the þz direction.
They are created in pairs by the quench and ballistically
move with velocities 	v0 with reflections at the

boundaries. Further, only contiguously generated QPs are
correlated. After an initial transient, any given site will be
visited only by uncorrelated QPs, originating from distant
places. This leads to the relaxation of the magnetization to
a steady-state value in region I that would be characterized
by a certain static density of uncorrelated QPs. However,
once correlated QPs meet again due to reflections at the
boundaries, coherences are recreated and show up in oscil-
lation revivals. This happens, first, at multiples of T (black
solid lines in the schematic plot) when all QP trajectories
cross their momentum-inverted counterparts (the solid red
lines show an example) and, second, along the trajectories
of QP pairs generated at the boundaries. Such QPs travel
together as one partner is reflected at t � 0 (dashed red
lines, not plotted in region IV for clarity). The periodicity
of the trajectories should lead to periodic revivals for
t > T. This is indeed observed approximately, although
finally the velocity dispersion of the QPs renders the time
evolution quasiperiodic. Finally, QP trajectories cannot
intersect at j ¼ 1, N. The density of (incoherent) QPs is
thus lower here than for bulk sites, yielding an appreciably
lower quasistationary value.
Discussion and outlook.—The setup and the experiments

we have proposed might help to establish the simulation
of interacting quantum many-body systems as a new para-
digm in circuit QED and to bring parts of the theoretical
discourse in nonequilibrium physics closer to observation.
The phenomena discussed here are based on realizable
system parameters and should occur within the system’s
coherence time. Given the readout capabilities in cQED
(e.g., Ref. [16]), their measurement should be feasible, for
instance, because single-shot readout is not required. Once
an actual implementation sets some boundary conditions,
the choice of system parameters can be further optimized.
We have numerically verified that all presented results are
robust against disorder up to a few percent in� and J [44].
Detuning individual qubits, however, would allow one to
create arbitrary potentials for the excitations, study the
interplay of Anderson localization and many-body physics,
or change the effective chain length. Using a second reso-
nator, the dynamics of the end-to-end correlator h�1

x�
N
x i

(indicating long-range order) could be measured (see
Ref. [37]). Many other experiments are conceivable with
our setup, such as suddenly coupling two isolated chains
(and other local quenches) or even parameter ramps through
the QPT, with Kibble-Zurek defect creation. We note also
that hitherto unexplored measurement physics could be
studied when the first qubit is not detuned from the chain,
like resolving many-body eigenstates or the quantum Zeno
effect in a many-body system. Once the setup is properly
understood, it will be easy to break the integrability of our
model in a controlled way (e.g., via longer-range cou-
plings). This would push our cQED quantum simulator
into a regime beyond classical computational capabilities,
where further open questions about nonequilibrium

FIG. 4 (color online). Behavior after a quench: time evolution
of the magnetization h�j

zi in a TFIC of length N ¼ 30 after a
quench of the normalized transverse field � ¼ 8 ! 1:2 (center)
with a schematic plot (right) and the measurable observable h�1

zi
singled out (left) on the same time scale. Values <� 0:9
(>�0:6) are plotted in black (white).
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dynamics can be addressed, such as thermalization and
diffusive transport. Furthermore, going to 2d or 3d introdu-
ces new design options, for instance, frustrated lattices.
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U. Schollwöck, J. Eisert, and I. Bloch, Nat. Phys. 8, 325
(2012).

[7] A. Friedenauer, H. Schmitz, J. T. Glueckert, D. Porras,
and T. Schaetz, Nat. Phys. 4, 757 (2008).

[8] R. Islam et al., Nat. Commun. 2, 377 (2011).
[9] B. P. Lanyon, C. Hempel, D. Nigg, M. Muller, R.

Gerritsma, F. Zahringer, P. Schindler, J. T. Barreiro, M.
Rambach, G. Kirchmair, M. Hennrich, P. Zoller, R. Blatt,
and C. F. Roos, Science 334, 57 (2011).

[10] J.W. Britton, B. C. Sawyer, A. C. Keith, C.-C. J. Wang,
J. K. Freericks, H. Uys, M. J. Biercuk, and J. J. Bollinger,
Nature (London) 484, 489 (2012).

[11] A. Wallraff, D. I. Schuster, A. Blais, L. Frunzio, R.-S.
Huang, J. Majer, S. Kumar, S.M. Girvin, and R. J.
Schoelkopf, Nature (London) 431, 162 (2004).

[12] L. DiCarlo, M.D. Reed, L. Sun, B.R. Johnson, J.M. Chow,
J.M. Gambetta, L. Frunzio, S.M. Girvin, M.H. Devoret,
and R. J. Schoelkopf, Nature (London) 467, 574 (2010).

[13] A. Fedorov, L. Steffen, M. Baur, M. P. da Silva, and A.
Wallraff, Nature (London) 481, 170 (2012).

[14] M.D. Reed, L. DiCarlo, S. E. Nigg, L. Sun, L. Frunzio,
S.M. Girvin, and R. J. Schoelkopf, Nature (London) 482,
382 (2012).

[15] R. McDermott, R.W. Simmonds, M. Steffen, K. B.
Cooper, K. Cicak, K.D. Osborn, S. Oh, D. P. Pappas,
J.M. Martinis, Science 307, 1299 (2005).

[16] R. Vijay, D. H. Slichter, and I. Siddiqi, Phys. Rev. Lett.
106, 110502 (2011).

[17] M.W. Johnson et al., Nature (London) 473, 194 (2011).
[18] M. Mariantoni et al., Science 334, 61 (2011).

[19] A. Dewes, F. Ong, V. Schmitt, R. Lauro, N. Boulant,
P. Bertet, D. Vion, and D. Esteve, Phys. Rev. Lett. 108,
057002 (2012).
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Rev. Lett. 109, 053601 (2012).

[26] M.-J. Hwang and M.-S. Choi, arXiv:1207.0088.
[27] E. Lieb, T. Schultz, and D. Mattis, Ann. Phys. (N.Y.) 16,

407 (1961).
[28] P. Pfeuty, Ann. Phys. (N.Y.) 57, 79 (1970).
[29] A. Polkovnikov, K. Sengupta, A. Silva, and M.

Vengalattore, Rev. Mod. Phys. 83, 863 (2011).
[30] E. Barouch, B. McCoy, and M. Dresden, Phys. Rev. A 2,

1075 (1970).
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I. THE QUBIT-QUBIT COUPLING
HAMILTONIAN

In this section, our goal is to derive the Hamiltonian
of a chain of capacitively coupled charge-based artificial
atoms as in Fig. 1 of the main text from circuit the-
ory. Both for Cooper-pair boxes (CPBs) and for trans-
mons (for reviews on superconducting artificial atoms,
see [1, 2]), this Hamiltonian takes on the form of HI [Eq.
(2) of the main text]. Our derivation of the Hamilto-
nian on the basis of circuit theory enables us to analyze
the dependence of Ω and J (and thus of ξ = Ω/2J) on
the fundamental, engineerable parameters of the artifi-
cial atoms and on an externally applied, in-situ tunable
magnetic flux.

We model the chain of artificial atoms in Fig. 1 of the
main text by the circuit diagram of Fig. S1. The SQUID-
like loop of the jth artificial atom can be threaded by a
(classical) external magnetic flux bias Φj . Its identical
Josephson junctions are characterized each by a Joseph-
son energy εJ,j . For simplicity, we absorb the capaci-
tances of the Josephson junctions into the capacitance Cj
between the islands of the artificial atom (which shunts
the SQUID loop). Moreover, we take into account only
coupling capacitances Cj between the right island of the
jth artificial atom and the left island of the j+ 1st artifi-
cial atom. The mediated capacitive coupling between the
artificial atoms corresponds to the electrostatic coupling
of the electric dipole operators of charge distributions in
atomic QED [3], which we have employed in the main
text to motivate the Hamiltonian HI . In order to be

able to compare our results with previous ones [4, 5], we
do not assume that the artificial atoms are identical for
the moment.

We begin by considering the conceptionally important
case N = 2. This case has been already studied for CPBs
[4] and transmons [5] in similar setups. Using the stan-
dard approach to circuit quantization [6, 7], one obtains
H(2) =

∑2
j=1(q2

j /2C̃j − EΦ
J,j cos 2eφj) + q1q2/C̃. Here,

~ = 1, φj and qj are the conjugate quantum flux and
charge variables, [φj , qj ] = i, and e is the elementary
charge. We have defined C̃j = C2

∗/(Cj + C), C̃ = C2
∗/C,

and C2
∗ = C1C2 + C1C + C2C (for N = 2, we drop the

index 1 from C1 and related quantities like C̃1). Further-
more, EΦ

J,j = EJ,j(Φj) = 2εJ,j cos(πΦj/Φ0), where Φ0

is the superconducting flux quantum. As usual, we in-
troduce charging energies EC,j = e2/2C̃j , number and
phase operators n̂j = −qj/2e and ϕj = −2eφj (see, e.g.,
[7]), and a coupling energy EC = e2/2C̃. The effects of
possible gate voltages that might bias the superconduct-
ing islands of an artificial atom are taken into account
by introducing offset charges nb,j ∈ R (in units of 2e)
and substituting n̂j → n̂b,j ≡ n̂j −nb,j (possible gate ca-
pacitances are assumed to be absorbed in EC,j and EC).
With these substitutions,

H(2) = h1 + h2 + 8ECn̂b,1n̂b,2. (S.1)

The hj = 4EC,j n̂
2
b,j −EΦ

J,j cosϕj describe the energies of
two isolated artificial atoms. The eigenfunctions (in the
ϕj-basis) and eigenvalues of hj are Mathieu’s functions
and characteristic values [8–10]. Their numerical values
can be determined with arbitrary precision for all pa-
rameters EC,j , EΦ

J,j , and nb,j (and all ϕj) and are imple-
mented in standard math programs. Taking the ground
state |gj〉 and the first excited state |ej〉 of hj to be eigen-
states of σjz and restricting the Hilbert space to these

FIG. S1. Circuit diagram of a chain of capacitively coupled
charge-based artificial atoms as in Fig. 1 of the main text.
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qubit bases, the Hamiltonian of the system becomes (up
to a constant)

H(2) =

2∑
j=1

Ωj
2
σjz + 8EC

2∏
j=1

∑
mj ,nj

(n̂b,j)m,n|mj〉〈nj |.

(S.2)

Here, Ωj is the difference between the qubit eigenener-
gies, (n̂b,j)m,n = 〈mj |n̂b,j |nj〉, and mj , nj ∈ {gj , ej}.
Using the explicit forms of 〈ϕj |mj〉 from [8–10] and
n̂j = −i∂/∂ϕj , the (n̂b,j)m,n are found to be real and
can be numerically calculated. In general, the n̂b,j have
diagonal elements in our choice of basis. However, for
the most common types of charge-based artificial atoms,
CPBs and transmons, H(2) takes on the form of HI for
N = 2, which is insightful to consider before returning
to the general case.

CPBs are characterized by 4EC,j � EΦ
J,j . Since we

are interested only in the low-energy sector of the Hilbert
space of (S.1), this condition allows us, in good approxi-
mation, to restrict the Hilbert space to the number states
{|nj〉, |(n+ 1)j〉}. Here, nj = bnb,jc [1]. Without loss of
generality, one can choose nb,j ∈ [0, 1[. This restriction
leads from Eq. (S.1) to

H
(2)
CPB =

2∑
j=1

[
4EC,j(n

2
b,j |0j〉〈0j |+ (1− nb,j)2|1j〉〈1j |)

−
EΦ
J,j

2
(|0j〉〈1j |+ H.c.)

]
+ 8EC

2∏
j=1

1∑
nj=0

(nj − nb,j)|nj〉〈nj |, (S.3)

in close similarity to the Hamiltonian derived in [4]. If
the CPBs are operated as usual at the charge degeneracy
points nb,j = 1/2 (to decrease charge noise), |gj〉 (|ej〉) is
an (anti-)symmetric superposition of |0j〉 and |1j〉. We
drop constants, identify |0j〉〈1j | = σj−, and rotate the
coordinate system by π/2 around the y-axis (clockwise).
This brings H(2)

CPB into the form of Eq. (S.2),

H
(2)
CPB =

2∑
j=1

EΦ
J,j

2
σjz + 2ECσ

1
xσ

2
x. (S.4)

This Hamiltonian also has the form of HI for N = 2
(since n̂b,j transforms into σjx/2 under the present as-
sumptions). That is, in the case of CPBs, the transition
frequencies Ωj are simply given by EΦ

J,j and flux-tunable.
The qubit-qubit coupling J = 2EC depends only on the
capacitances of the system and is independent of Φj and
the qubit transition frequencies (dJ/dΩj = 0). Thus,
the normalized transverse field ξ = Ω/2J (for Ω1 = Ω2)
is strictly linear in Ω.

For transmons-qubits [10], which are characterized by
4EC,j � EΦ

J,j , (i) expanding the cosφj terms in hj
of Eq. (S.1) and (ii) dropping the boundary condition

ψj,m(ϕj) = ψj,m(ϕj + 2π) on the eigenfunctions of hj
provides a good approximation [10]. Note that due to
(ii), the effect of the offset charges nb,j is completely sup-
pressed since the n̂j and the biased number operators n̂b,j
are equivalent canonical variables, [ϕj , n̂b,j ] = [ϕj , n̂j ] =
i. This is justified as the dependence of the qubit proper-
ties on the offset charges is exponentially suppressed with
increasing ratio EΦ

J,j/EC,j [10] (in reality, gate voltages
do not have to be applied to transmons). Thus, we now
aim to derive the parameters Ωj and (n̂b,j)m,n occuring
in Eq. (S.2) from Eq. (S.1) with

h ≈ 4EC n̂
2
b − EΦ

J (1− ϕ2/2! + ϕ4/4!)

= Ω0(a†a+ 1/2)− αΩ0(a† + a)4/4! + const., (S.5)

in a perturbation expansion in α = (EC/2E
Φ
J )1/2 � 1.

Here and in the following, we drop the index j where not
essential. Note that α is proportional to an approximate
expression for a transmon’s ‘relative anharmonicity’ [10].
We have defined Ω0 = (8EΦ

J EC)1/2, ϕ =
√

2α(a† + a),
n̂b = i/

√
8α(a† − a), and [φ, n̂b] = i requires a to be

bosonic. This approach has been used in [10] to study
a single transmon and its coupling to a microwave res-
onator. To first order in α, |gα〉 = |0〉 + α/4!(3

√
2|2〉 +√

3/2|4〉) and |eα〉 = |1〉 + α/4!(5
√

6|3〉 +
√

15/2|5〉),
where |m〉 is now an eigenstate of a†a. We substitute
Eq. (S.5) and the above expression for n̂b into Eq. (S.1)
and expand the resulting transmon-approximation H(2)

t

ofH(2) in the qubit basis spanned by |gα〉 and |eα〉. Drop-
ping constants and all terms ∝ αx with x > 1, and ro-
tating the coordinate system counter-clockwise by π/2
around the z-axis leads to

H
(2)
t =

2∑
j=1

Ω0,j(1− αj/2)

2
σjz + EC

2∏
j=1

(1− αj/4)
√
αj

σjx.

This transmon approximation of Eq. (S.2) also has the
form of HI for N = 2. We remark that in 0th order
perturbation theory, where the transmons are harmonic
oscillators, the terms in parentheses in H

(2)
t are equal

to 1. However, the term 1/
√
α1α2, stemming from the

product of the n̂b,j operators, is present. The 0th or-
der result corresponds to the Hamiltonian derived in [5]
for their system of coupled transmons. To first order
in α, the transmon transition frequencies are given by
Ωj = Ω0,j(1 − αj/2) = (8EΦ

J,jEC,j)
1/2 − EC [10]. They

are flux-tunable via (EΦ
J,j)

1/2 (rather than Ωj ∝ EΦ
J,j as

for CPBs). For transmons, the qubit-qubit coupling is
given by J = EC

∏
(1 − αj/4)/

√
αj . Importantly, this

J depends also on external fluxes via αj ∝ (EΦ
J,j)
−1/2

(and on the transition frequencies via αj = 2EC,j/Ω0,j).
Since the physical properties of a uniform TFIC are es-
sentially determined by the normalized transverse field
ξ = Ω/2J (the absolute values of Ω and J only set the
dynamical time scales), we use our perturbative results
to study the tunability of ξ for identical transmons. We
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insert our first-order results for Ω and J into ξ and ex-
pand ξ ≈ (Ω0/2EC)[α − α3/16 +O(α4)], where we have
set EC(J),1 = EC(J),2. The overall factor α comes from
the nominator of J and is not due to the nonlinear per-
turbation of the system as argued above. Factoring out
α = 2EC/Ω0 yields

ξ ≈ EC
EC

(1− α2/16 +O(α3)) ≈ EC
EC

. (S.6)

That is, the first order corrections to Ω and J in α exactly
cancel. For transmons, flux-tunability of ξ is a second-
order effect, via α2 = EC/2E

Φ
J . To roughly estimate the

strength of this effect, we consider the contribution of the
first-order approximations of Ω and J to it. Note that
the second-order approximations of Ω and J actually also
contribute to the leading flux-dependent term (∝ α2) of
ξ. If one requires the transmons to remain in their opti-
mal working regime 20 . EΦ

J /EC [10], this contribution
leads to a tunability ∆ξ/ξ ≈ α2/(16−α2) < 0.2%. Thus,
one may expect that strongly tuning ξ by changing the
flux bias will require to leave the optimal transmon work-
ing regime, and possibly even to go beyond the validity
regime of Eq. (S.5). Therefore, we now come back to the
general case of Eq. (S.1). Before doing so, we remark
that ξ ≈ EC/EC = (C + C)/C > 1. This indicates that
the ferromagnetic phase (ξ < 1) cannot be reached with
transmons.

It turns out that at the charge degeneracy point nb =
1/2, the biased charge operator n̂b = n̂ − nb has only
off-diagonal elements in the basis chosen in Eq. (S.2).
Consequently, H(2) has the form of HI (at N = 2) for
all ratios EΦ

J,j/EC,j . This enables us to interpolate be-
tween the charge-degenerate CPB case and the transmon
case (where the nb,j become irrelevant): Assuming iden-
tical qubits, we vary the ratio EΦ

J /EC at nb = 1/2. We
numerically calculate J = 8EC [(n̂b)g,e]

2 and Ω as func-
tions of EΦ

J /EC . Then we plot J vs. Ω [Fig. S2(a)]
and ξ vs. Ω [Fig. S2(b)]. Additionally, we plot the ap-
proximate results that we have gained analytically for
CPBs and transmons. To obtain J as a function of Ω
from our analytical results for transmons, we employ our
approximation for J to first order in α. In this approx-
imation, we replace α ≈ 2EC/(Ω + EC), making use of
the first order approximation for Ω. The plots show that
for EΦ

J /EC & 10, the qubit-qubit coupling J becomes
proportional to Ω, and the normalized transverse field ξ
ceases to be flux-tunable. For quenching ξ by changing
the flux bias one therefore has to engineer EΦ

J /EC . 10.
In this regime, the artificial atoms start to loose their
insensitivity to charge noise, which is a distinguishing
property of transmons. For instance, at EΦ

J /EC = 10,
[max Ω(nb) − min Ω(nb)]/Ω(nb) ≈ 3%. Here, Ω(nb) de-
notes the mean qubit transition frequency, averaged over
all possible bias charges nb. However, the characteristic
features of the quench dynamics of our circuit QED quan-
tum simulator occur on short timescales (see main text),
so that one should get along with the reduced dephasing
times of charge qubits in this regime (compared to usual
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FIG. S2. (a) Qubit-qubit coupling J and (b) normalized
transverse field ξ = Ω/2J vs. qubit transition frequency Ω
for two identical charge qubits operated at the charge de-
generacy point. The system is characterized by the charging
energy EC and the flux-tunable total Josephson energy EΦ

J of
a qubit, and by the capacitive coupling energy EC . The ratio
EΦ

J /EC fully determines a point on each axis (i.e., the quanti-
ties Ω/EC , J/EC , and EC

EC
ξ). The dots correspond to the inte-

ger values 0, 1, . . . , 40 of EΦ
J /EC . The solid lines are a guide

to the eye. Dashed, approximate analytical results for the
limits EΦ

J /4EC � 1 (Cooper-pair boxes) and EΦ
J /4EC � 1

(transmons).

transmons). For example, an energy relaxation time T1

of ∼ 7µs and a dephasing time T2 of ∼ 500ns have been
reported even for a CPB (at the charge degeneracy point)
[11]. We remark that, depending on the charge bias nb,
Ω can be equal to the energy difference between second
and first excited state of the artificial atom, E2,1, which
would invalidate the two-level approximation for the ar-
tificial atoms. For instance, if nb = 0.5 as considered
here, this happens at EΦ

J /EC ≈ 9.03 [10]. However, the
difference of these transitions crosses zero very steeply as
a function of EΦ

J /EC [10]. Thus, the two-level approxi-
mation for the artificial atoms is justified as long as start
or end point of the quench are not too close to this value.
We finally remark that working with tunable coupling
capacitances [12] might provide an alternative to work-
ing with transmons out of their optimal parameter range.
This would allow one to tune ξ via tuning EC .

Coming now to the general case of a chain of artifi-
cial atoms of arbitrary length, it turns out that we can
directly apply our results for N = 2. Having written
the Lagrangian of such a system in terms of the classical
variables φj and φ̇j [6, 7], one finds that the canonical
charge variables qj are given by q = Cφ̇. Here, we have
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defined q = (q1, . . . , qN )T , φ̇ = (φ̇1, . . . , φ̇M )T , and

C =



C + C −C 0 · · · 0
−C C + 2C −C
0 −C C + 2C −C
...

. . . . . . . . .
−C C + 2C −C

0 −C C + C

 ,

and we have assumed that the artificial atoms are identi-
cal, Cj = C and Cj = C. Inverting C yields φ̇(q). With
that, one obtains the HamiltonianH of the system, which
is then quantized as usual [6, 7]. To first order in C/C,

H =

N∑
j=1

(
q2
j

2C
− EΦ

J cos 2eφj

)

+
C
C

(
−q2

1 − q2
N −

∑N−1
j=2 2q2

j +
∑N−1
j=1 2qjqj+1

2C

)
.

(S.7)

The same steps as for N = 2 now lead to a straightfor-
ward generalization of Eq. (S.1), where artificial atoms
with Hamiltonian hj are coupled to their nearest neigh-
bours via n̂b,j n̂b,j+1 [for N = 2, Eq. (S.7) equals the first
order expansion of H(2) above Eq. (S.1)]. To first order
in C/C, the only difference for N > 2 is that the effec-
tive charging energies of the artificial atoms in the bulk
of the chain (j 6= 1, N) are slightly reduced compared
to those at the surface (j = 1, N). This is because the
bulk artificial atoms couple to two neighbours. In reality,
this surface inhomogeneity should be negligible already
because the capacitance of the surface artificial atoms is
also increased by their coupling to other parts of the cir-
cuit. Therefore, to first order in C/C, our derivation of
the Hamiltonian HI of the TFIC from the circuit the-
ory of two artificial atoms also holds for larger chains,
only with a slightly renormalized EC . The same is true
for our corresponding deliberations on the dependence of
Ω, J , and ξ on the fundamental circuit quantities. We
remark that taking into account terms of order (C/C)l

introduces coupling terms ∝ qjqj+l in Eq. (S.7) (and, for
l > 1, renormalizes also the nearest neighbour coupling
energies EC compared to the case N = 2). Hence, the
integrability-breaking longer-range coupling decays expo-
nentially with distance l in our system and is therefore
neglected in this work. We finally remark that nonpertur-
bative numerical calculations strongly suggest that also
the renormalized values of EC and EC for N > 2 do not
allow one to achieve EC/EC < 1. This means that the
ferromagnetic phase cannot be reached with transmons
in the limit of large EΦ

J /EC [cf. Eq. (S.6)].

II. DIAGONALIZATION AND SPECTRUM OF
THE TRANSVERSE-FIELD ISING CHAIN

In this section, we diagonalize the Hamiltonian HI
[Eq. (2) of the main text] and calculate the qubit au-

tocorrelator ρ(t) = 〈σ1
x(t)σ1

x(0)〉 and the corresponding
spectrum ρ̃(ω) =

∫
dteiωtρ(t). Our method and notation

follow Ref. [13].
In the main text, we have focussed on a circuit QED

system with ferromagnetic qubit-qubit coupling J > 0.
Since setups with antiferromagnetic coupling are also
conceivable, we generalize in the remainder of these sup-
plementary notes the Hamiltonian of the transverse-field
Ising chain to

HI =
Ω

2

N∑
j=1

σjz − J
N−1∑
j=1

σjxσ
j+1
x , (S.8)

where J may be negative (Ω > 0 as before). We define
J = |J |. Applying the Jordan-Wigner transformation
σ+
j = c†j exp(iπ

∑j−1
k=1 c

†
kck) to HI leads to

HI = −NΩ

2
+ Ω

N∑
j=1

c†jcj − J
N−1∑
j=1

[c†jc
†
j+1+ c†jcj+1+H.c.],

(S.9)

with fermionic cj . In this form, HI can be diagonalized
using the method for diagonalizing quadratic fermionic
Hamiltonians of the form

H =

N∑
i,j=1

[c†iAi,jcj + 1/2(c†iBi,jc
†
j + H.c.)] (S.10)

of Ref. [13]. In our case,

A =



Ω −J 0 · · · 0
−J Ω −J

0 −J Ω −J
...

. . . . . . . . .
−J Ω −J

0 −J Ω

 , (S.11)

and B is obtained by substituting Ai,i = Ω → 0 and
Ai+1,i = −J → J in A. H is diagonalized by introduc-
ing new fermions ηk =

∑N
j=1 gk,jcj + hk,jc

†
j . The com-

ponents gk,j and hk,j of the vectors gk and hk and the
eigenvalues Λk of H are determined by defining normal-
ized vectors φk = gk + hk and ψk = gk − hk and solving
the equations

φk(A−B) = Λkψk, ψk(A+B) = Λkφk. (S.12)

For Λk 6= 0, this is most easily done by solving, e.g.,

(A−B)(A+B)φk = Λ2
kφk (S.13)

and calculating ψk via Eqs. (S.12). Note that since AT =
A and BT = −B, Λ2

k ≥ 0 and the φk and ψk can be
chosen real and orthogonal for different k,

∑
j φk,jφk′,j =∑

j ψk,jψk′,j = δk,k′ . For A and B as defined above, one
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FIG. S3. Excitation energies Λk vs. the allowed real wave
vectors k of a transverse-field Ising chain withN = 30 and ξ =
0.5, 1, 1.2, 3 (dots). For ξ = 0.5, there is also one imaginary
wave vector (see text). The solid lines are a guide to the
eye. The shaded regions indicate the bandwidth of the Ising
chain for ξ = 0.5 (ferromagnetic phase, orange) and for ξ = 3
(paramagnetic phase, blue).

obtains

HI =
∑
k

Λk(η†kηk − 1/2), (S.14)

Λk = 2J
√

1 + ξ2 − 2ξ cos k, (S.15)
φk,j = Ak sin k(N + 1− j), (S.16)

ψk,j = sign
[ J sin k

sin k(N + 1)

]
Ak sin kj, (S.17)

Ak = 2
(
2N + 1− sin[k(2N + 1)]/ sin k

)−1/2
. (S.18)

Here, ξ = Ω/2J is the normalized transverse field, and
the possible values of k are solutions of

sin kN

sin k(N + 1)
= ξ. (S.19)

If |ξ| ≥ N/(N + 1) (|ξ| < N/(N + 1)), Eq. (S.19) has N
(N − 1) real solutions ∈ [0, π]. If |ξ| < N/(N + 1), there
is also one imaginary solution k′ = iκ (k′ = π + iκ) for
positive (negative) ξ with sinhκN/ sinhκ(N + 1) = |ξ|.
These solutions exhaust the eigenmodes of the system.
Note that Λk′ → 0 if |ξ| → 0 or N →∞.

For N → ∞, HI undergoes a second order QPT at
ξ = ±1 from a ferromagnetic [ξ ∈ (0, 1)] or an antiferro-
magnetic [ξ ∈ (−1, 0)] ordered phase with doubly degen-
erate eigenstates (Λk′ → 0) to a paramagnetic disordered
phase (|ξ| > 1) with Λk > 0 for all k. This QPT is sig-
naled by correlators of the order parameter σx. Note,
though, that 〈σjx〉 ≡ 0 for all ξ. Since HI commutes with∏
j σ

j
z, all eigenstates of HI formally obey this symmetry

that maps σjx → −σjx.
Fig. S3 shows the excitation energies Λk of HI vs. the

allowed (real) wave vectors k for N = 30 and various
ξ (for ξ = 0.5, there is one imaginary wave vector k′ ≈
0.693i, and Λk′ ≈ 0). In the limit N →∞, the Λk form a
continuous band. Its gap is given by |1−|ξ|| and vanishes
at the quantum critical point |ξ| = 1. In the disordered
phase (|ξ| > 1), the bandwidth is 4J (indicated for ξ = 3
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FIG. S4. End-to-end correlator |〈σ1
xσ

N
x 〉| vs. normalized mag-

netic field |ξ| = Ω/2J for N = 5, 10, 20, 30 (blue, red, green,
orange). The signs of 〈σ1

xσ
N
x 〉(ξ) and ξ agree except that N is

odd and ξ < 0. Inset, same plot but |〈σ1
xσ

N
x 〉| on a logarithmic

scale covering values from 10−7 to 1.

in Fig. S3) and independent of ξ. In the ordered phase
(|ξ| < 1), the bandwidth is given by 4J |ξ|.

Signatures of the QPT are already present for rela-
tively small system sizes. This is evident from Fig. S4
where we plot the end-to-end correlator 〈σ1

xσ
N
x 〉, an or-

der parameter of the QPT for N → ∞, as function of
ξ for different (finite) N (at zero temperature; see Sec.
V and [13] for calculations). Already for N & 10, the
end-to-end correlator becomes very small at |ξ| ≈ 1 and
displays a distinct transition from algebraic to exponen-
tial decay (see inset of Fig. S3). This illustrates that
even small Ising chains of a comparable size exhibit in-
teresting quantum many-body physics. For more details
on the transverse-field Ising chain and its QPT, see, e.g.,
[13–15].

Assuming zero temperature, the qubit autocorrelator
ρ(t) = 〈σ1

x(t)σ1
x(0)〉 can now be easily calculated using

σ1
x = c†1 + c1 =

∑
k

φk,1(η†k + ηk). (S.20)

One obtains

ρ(t) =
∑
k

φ2
k,1e
−itΛk . (S.21)

The Fourier transform ρ̃(ω) of ρ(t) is a sum of delta
peaks. In order to obtain a continuous spectrum ρ̃(ω),
we have to take the limit N → ∞ in Eq. (S.21). As
its RHS contains rapidly oscillating terms for N → ∞
(like sinNk), it cannot be straightforwardly transformed
into an integral via a Riemann sum. We therefore write
kl = π/N(l− νl) for l = 1, . . . , N [13] and find, by means
of Eq. (S.19),

νl =
1

π
arctan

[ ξ sin(πl/N)

ξ cos(πl/N)− 1

]
+O(1/N). (S.22)

With these expressions for kl and νl, ρ(t) can be trans-
formed into an integral

∫ N
1

dl for N → ∞. Substituting
dl→ dk (k as defined above, dk/dl ≈ π/N) and dropping
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all terms O(1/N) finally leads to

ρ(t) = Θ(1− |ξ|)(1− |ξ|2)

+
2

π

∫ π

0

dk
ξ2 sin2 k

1 + ξ2 − 2ξ cos k
e−itΛ(k), (S.23)

where Θ(x) is the Heaviside step function and Λ(k)
stands for Λk with continuous k. The first term on the
RHS of Eq. (S.23) is the k′-term in Eq. (S.21) forN →∞,
which must be treated separately. It causes a nonzero
mean value of Reρ(t) in the ordered phase. Taking the
Fourier transform of Eq. (S.23) yields

ρ̃(ω) = 2πδ(ω)Θ(1− |ξ|)(1− |ξ|2)

+ Θ(ω − 2J |1− |ξ||) Θ(2J |1 + |ξ|| − ω)

× 4|ξ|
ω

√
1− cos2 k(ω), (S.24)

where cos k(ω) = [1 + ξ2 − ( ω2J )2]/(2ξ). Note that this
result does not depend on the sign of J (and the sign
of ξ = Ω/2J ). For ferromagnetic coupling J > 0 (and
ξ > 0), Eq. (S.24) can be simplified to the form of Eq. (3)
and is plotted in Fig. 2(a) of the main text. For antifer-
romagnetic coupling J < 0 (and ξ < 0), one just has to
replace ξ → |ξ| in Eq. (3). Thus, with this replacement,
our discussion of ρ̃(ω) below Eq. (3) and the plots in Fig.
2 of the main text hold for antiferromagnetic coupling as
well.

III. SPECTRUM OF THE RESONATOR

In this section, we calculate the spectrum S(ω) of the
resonator of our system, which is coupled to the Ising
chain. Complementary to Figs. 2(b) and 2(c) of the main
text, we plot S(ω) in the limiting cases g/J � 1 and
g/J � 1, and for finite N . In these plots, we vary the
transverse field ξ at fixed qubit-qubit coupling J , as ex-
perimentally realistic for Cooper-pair boxes (see Sec. I
of these supplementary notes). However, if the proposed
setup is implemented with standard transmons instead of
Cooper-pair boxes, then ξ will be constant and J will be
flux-tunable. We also provide plots of S(ω) for this sce-
nario. We remark that, like ρ̃(ω), S(ω) turns out to be in-
dependent of the sign of J (and of the sign of ξ = Ω/2J ).
For ease of notation, we will therefore refer to J as the
qubit-qubit coupling and identify ξ = |ξ| = Ω/2J where
appropriate throughout this section.

In order to calculate S(ω), we assume g/ω0 � 1 and
linearize the Hamiltonian H [Eq. (1) of the main text].
That is, we now consider the Hamiltonian

H̃ =
1

2
(p2

0 + ω2
0x

2
0) + x0

N∑
j=1

λjxj +Hh, (S.25)

where λj =
√

2g2ω0λ̃j and Hh =
∑N
j=1(p2

j +w2
jx

2
j )/2. It

is obtained by substituting the coupling term in Eq. (1)

by g(a† + a)
∑N
j=1 λ̃jxj (λ̃j is a coupling constant) and

HI by Hh, the Hamiltonian of a set of harmonic oscil-
lators with frequencies wj , and by introducing canonical
coordinates for the resonator via x0 = 1/

√
2ω0(a† + a)

and p0 = i
√
ω0/2(a†−a). Note that x0 couples to a force

Fh(t) =
∑N
j=1 λjxj(t) in Eq. (S.25). By writing H [Eq.

(1)] in terms of x0 and p0, one finds that here x0 couples
to a force FI(t) =

√
2g2ω0σ

1
x(t). The parameters λ̃j and

wj in H̃ can be chosen such that

〈Fh(t)Fh(0)〉 =

N∑
j=1

λ2
j

2wj
e−iwjt = 〈FI(t)FI(0)〉 (S.26)

(in this case also the spectra of the forces will agree).
Indeed, wj = Λkj and λ̃2

j = 2wjA
2
kj

sin2Nkj guarantee
Eq. (S.26). We now calculate S(ω), the Fourier transform
of 2ω0〈0̃|x0(t)x0|0̃〉, where |0̃〉 is the ground state of H̃.
To that end, we first reformulate

H̃ =
1

2
(PTP + XTΩ2X), (S.27)

with XT = (x0, x1, . . . , xN ), PT = (p0, p1, . . . , pN ), and

Ω2 =


ω2

0 λ1 . . . λN
λ1 w2

1
...

. . .
λN w2

N

 . (S.28)

There is an orthogonal matrix G for which

H̃ =
1

2
(P̃T P̃ + X̃T Ω̃

2
X̃), (S.29)

where X̃ = GTX, P̃ = GTP, and Ω̃
2
is diagonal with

Ω̃2
j ≡ (Ω̃

2
)jj being an eigenvalue of Ω2. We calculate

〈0̃|x0(t)x0|0̃〉 =

N∑
j,j′=0

G0,jG0,j′〈0̃|x̃j(t)x̃j′ |0̃〉 (S.30)

=
N∑
j=0

G2
0,j

2Ω̃j
e−itΩ̃j (S.31)

and obtain with that

S(ω) = 2πω0

N∑
j=0

G2
0,j

Ω̃j
δ(ω − Ω̃j) (S.32)

= 4Θ(ω)ω0Im
[
R(Ω2, ω2 − i0+)0,0

]
. (S.33)

In the last line, the matrix element of the resolvent
R(Ω2, ω2) = (ω2 − Ω2)−1 is to be taken in the basis in
that Ω2 has the form of Eq. (S.28). It can be calculated
following Ref. [16]. The result is

S(ω) =
4Θ(ω)ω0[〈FhFh〉ω/2 + 0+]

[ω2 − ω2
0 − 2χ̃(ω2)]2+[0++ 〈FhFh〉ω/2]2

,

(S.34)

χ̃(ω2) =
1

2π

∫
dΩ

Ω〈FhFh〉Ω
ω2 − Ω2

. (S.35)



7

Thus, we have expressed the spectrum of the resonator
S(ω) in terms of the spectrum 〈FhFh〉ω of the bath of
harmonic oscillators which is the Fourier transform of
〈Fh(t)Fh(0)〉 [Eq. (S.26)]. Note that in the limit N →
∞, 〈FhFh〉ω can become continuous and then χ̃(ω2) is
a principal value integral. If we now assume that we
have chosen λ̃j and wj in H̃ [Eq. (S.25)] such that Eq.
(S.26) holds, we can substitute 〈FhFh〉ω → 〈FIFI〉ω =
2g2ω0ρ̃(ω). This leads to

S(ω)=
4Θ(ω)ω0[g2ω0ρ̃(ω) + 0+]

[ω2−ω2
0−4g2ω0χ(ω2)]2+[0++ g2ω0ρ̃(ω)]2

,

(S.36)

where χ(ω2) is the principal value integral

χ(ω2) =
1

2π

∫
dΩ

ρ̃(Ω)Ω

ω2 − Ω2
. (S.37)

Note that S(ω)|g=0 = 2πδ(ω − ω0). However, the spec-
trum of any realistic microwave resonator at g = 0 will
be a Lorentzian with full linewidth κ at half maximum.
We use the case g = 0 to relate the so far infinitesimal
real number 0+ in Eq. (S.36) to κ by demanding

S(ω)|g=0 =
4Θ(ω)ω00+

(ω2 − ω2
0)2 + (0+)2

≈ κ

(ω − ω0)2 + (κ/2)2
.

(S.38)

For κ� ω0, it is sufficient to focus on the vicinity of the
strongly pronounced peak of S(ω)|g=0 at ω = ω0 (i.e.,
on ω − ω0 � ω0), and we find that here Eq. (S.38) is
fulfilled for 0+ = κω0. Inserting this expression in Eq.
(S.36) finally leads to Eq. (4) of the main text. Note that
the properties of the TFIC enter our result for S(ω) only
via the spectrum ρ̃(ω) of the bare TFIC. Therefore, Eq.
(4) also holds if the resonator is coupled to a different
system than the TFIC, with some other spectrum. Note
further that S(ω) is independent of the sign of J (and
the sign of ξ = Ω/2J ) because the spectrum ρ̃(ω) of the
TFIC has this property.

Fig. S5 complements Figs. 2(b) and 2(c) of the main
text by showing S(ω) in the limiting cases g/J � 1 [Fig.
S5(a)] and g/J � 1 [Fig. S5(b)]. In Fig. S5(a), we choose
the parameters J/ω0 and κ/ω0 as in Fig. 2(b), but g/ω0 =
0.05. Where the Ising chain is off-resonant with ω0, the
spectrum is qualitatively similar to the one of Fig. 2(b).
Also here one observes the dispersive shift (∝ g2) of the
resonator frequency in analogy to the N = 1 case and a
broad side maximum of width ∼ 4J (blue and green lines
in the inset). Both are less pronounced than in Fig. 2(b)
due to the lower value of g. On resonance (ξ ≈ ω0/2J),
though, the double peak structure reminiscent of theN =
1 case is no longer visible. Instead, S(ω) is a Lorentzian
around ω0 with full width at half maximum given by
2g2/J (as long as κ� g2/J and ω is within the band of
the Ising chain). Indeed, assuming small g/J , one may
replace ρ̃(ω) by its maximum 2/J and take χ(ω2) ≈ 0 in
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FIG. S5. Spectrum S of a resonator coupled to the first
spin of an Ising chain (N → ∞) vs. frequency ω and nor-
malized transverse field ξ. (a) The case g/J � 1 (the pa-
rameters are g = 0.05, J = 0.1, and κ = 10−4). Inset, S(ω)
for ξ = 3.9, 5, 6.1 (blue, red, green). (b) The case g/J � 1
(the parameters are g = 0.12, J = 0.05, and κ = 10−4).
Inset, S(ω) for ξ = 7.8, 10, 12.2 (blue, red, green). All pa-
rameters are measured in units of ω0. The dashed lines are
the first two excitation energies of H for the same parame-
ters, but N = 1. For better visibility of the features, values of
S(ω) > 1 [S(ω) > 8] in the density plot of (a) [(b)] are plotted
in white. The lines in the insets correspond to cuts along the
arrows in the main plots.

Eq. (S.36). One can then verify

S(ω)|ξ≈ω0/2J ≈
2g2/J

(ω − ω0)2 + (g2/J)2
. (S.39)

In Fig. S5(b), we choose the parameters g/ω0 and κ/ω0

as in Fig. 2(b), but J/ω0 = 0.05. This case has already
much similarity with the usual single-qubit case. Off res-
onance, the resonator experiences again the same disper-
sive shift as for N = 1. On resonance, the broad double
peak structure of Figs. 2(b,c) with width 4J has devel-
oped into two sharp Lorentzians separated by ≈ 2g as for
N = 1 (red line in the inset). The chain is visible only
as faint band of width 4J in between these peaks.

In order to illustrate finite-size effects on the res-
onator spectrum S(ω), we calculate the spectrum ρ̃(ω)
of a finite transverse-field Ising chain. It is given by
the Fourier transform of Eq. (S.21) and reads ρ̃(ω) =
2π
∑
k φ

2
k,1δ(ω − Λk). We assume that the delta peaks

in ρ̃ are broadened by decay processes and replace them
with Lorentzians centered around Λk and having a full
width at half maximum of γ. Together with Eq. (4) of
the main text, this yields the spectrum S(ω) of a res-
onator coupled to a TFIC of finite length. In Fig. S6,
we plot S(ω) for similar system parameters as in Fig. 2
of the main text (g/J ≈ 1), but N = 20. Signatures of
the QPT at ξ = 1, the dispersive shift of the resonator
frequency, and the double-peak structure on resonance
with 4J separation of the peaks (rather than 2g as in the
case N = 1) are present also for N = 20. We remark that
compared to the case N →∞ (Fig. 2), the ratio g/J has
to be slightly increased for N = 20 (Fig. S6) such that
the double peak structure of S(ω) on resonance is clearly
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FIG. S6. (a) Spectrum S of a resonator coupled to the first
spin of a finite Ising chain (N = 20) vs. frequency ω and
normalized transverse field ξ. The parameters are g = 0.12,
J = 0.08, κ = 10−4, and γ = 5 × 10−3 (in units of ω0). (b)
S(ω) for ξ = 6.1. This curve corresponds to a cut along the
arrows in (a).

visible. This is because the weight of the edges of the
band of the Ising chain in the spectrum ρ̃(ω) increases
with N .

Finally, we plot S(ω) for varying values of the qubit-
qubit coupling J and keep the normalized transverse field
ξ = Ω/2J constant. This corresponds to an implementa-
tion of our proposal with usual flux-tunable transmons.
In such an implementation, J and Ω change with the ex-
ternal flux approximately in the same proportion. Thus,
J is tunable and ξ is constant (see Sec. I of these supple-
mentary notes).

An Ising chain with tunable J but constant ξ is con-
fined to one phase. If implemented with transmons, this
has to be the paramagnetic phase (ξ > 1; see Sec. I).
Thus, when plotted as function of J at constant ξ, the
resonator spectrum S(ω) will not carry signatures of a
phase transition. Moreover, the bandwidth of the chain
(4Jξ for ξ < 1 and 4J for ξ > 1) will not be constant.
Otherwise S(ω) displays the same features for transmons
as before for CPBs, as Fig. S7 demonstrates. Before dis-
cussing Fig. S7, we remark that the tunability of J for
transmons implies that ratio g/J is not constant. We
have seen that shape of the spectrum S depends crucially
on the ratio g/J if the Ising chain is resonant with the
resonator. Therefore, we differentiate the cases g/J � 1,
g/J ≈ 1, and g/J � 1 (as for CPBs) for the Ising chain
formed by transmons being resonant with the resonator
frequency ω0.

Under these conditions, Fig. S7(a) corresponds to Figs.
2(b) and 2(c) of the main text. That is, these figures il-
lustrate the situation where the qubit-qubit coupling J
in a semi-infinite chain of transmons resonant with ω0

[Fig. S7(a)] and in a semi-infinite chain of CPBs [Figs.
2(b,c)] is comparable to the coupling g of the respective
first artificial atom and the resonator. Explicitly, like in
Figs. 2(b,c), we have chosen g/ω0 = 0.12 in Fig. S7(a).
Moreover, the choice ξ = 5 (a realistic value for trans-
mons) ensures that the center of the band of the Ising
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FIG. S7. (a) Spectrum S of a resonator coupled to the first
spin of an Ising chain (N → ∞) vs. probe frequency ω and
qubit-qubit coupling J . The normalized transverse field ξ is
constant (ξ = 5). This corresponds to an implementation of
the Ising chain with standard transmons. Here, the resonator
and the first spin couple with a strength g = 0.12. The color
scale covers values of S from 0 (black) to 15 (white), and
values > 15 are also plotted in white. Inset, S(ω) for the
same parameters and J = 0.08, 0.096, 0.125 (blue, red, green).
These curves correspond to cuts along the arrows through the
density plot of (a). (b) Spectrum S as in (a) in the limiting
case g/J � 1. The plot shows S(ω) for ξ = 5, g = 0.05, and
J = 0.08, 0.1, 0.13 (blue, red, green). (c) Spectrum S as in (a)
in the limiting case g/J � 1. The plot shows S(ω) for ξ = 10,
g = 0.12, and J = 0.03, 0.05, 0.07 (blue, red, green). For all
plots we have chosen the resonator linewidth κ = 10−4. All
parameters are measured in units of the resonator frequency
ω0.

chain (2Jξ) formed by transmons is on resonance with
the resonator at J/ω0 = 0.1 [like in Figs. 2(b,c)]. As
expected, the bandwidth of the TFIC increases linearly
with J in Fig. S7(a). Out of resonance, one observes the
usual dispersive shift of the resonator frequency. On res-
onance, the spectrum exhibits the characteristic double-
peak structure with 4J separation of the peaks, which is
also present for Cooper-pair boxes [Fig. 2(c)].

Also in the limiting cases g/J � 1 and g/J � 1 (on
resonance), a chain of transmons displays the same be-
havior that we have found before for CPBs: Fig. S7(b)
shows S(ω) for ξ = 5 as in (a), but with g/ω0 = 0.05. For
the different curves, J is chosen such that the TFIC is
below (blue), on resonance with (red), and above (green)
the resonator frequency ω0. This plot corresponds to the
inset of Fig. S5(a). The spectrum of a chain of transmons
weakly coupled to a resonator is essentially identical to
the one for a chain of CPBs, and its features can be ex-
plained in the same manner. In order to study the limit-
ing case g/J � 1 for transmons, we chose g = 0.12 and
ξ = 10 for the curves in Fig. S7(c). With this choice of ξ,
the Ising chain formed by transmons is on resonance with
the resonator at J = 0.05. This was also the case in Fig.
S5(b), where we have studied the limiting case g/J � 1
for CPBs. As Fig. S7(b), Fig. S7(c) shows S(ω) for J
chosen such that the TFIC is below (blue), on resonance
with (red), and above (green) the resonator frequency ω0.
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FIG. S8. Nonequilibrium time evolution of 〈σj
z〉 after a π-

pulse on the first qubit in a transverse-field Ising chain of
length N = 20 in the paramagnetic phase (normalized trans-
verse field ξ = 8). Qubit 11 is strongly detuned from the
rest of the chain. Values > −0.5 are plotted in white. The
measurable observable 〈σ1

z〉 is singled out left.

Like for CPBs, one can clearly see how the usual Jaynes-
Cummings spectrum (corresponding to the case N = 1)
emerges as limiting case.

IV. PROPAGATION OF A LOCALIZED
EXCITATION IN THE ISING CHAIN

This section contains the explicit evaluation of the
RHS of Eq. (5) of the main text. Further, it is shown
that by deliberately detuning the transition frequency of
one qubit, the effective length of the TFIC can be modi-
fied. With

Lj ≡ c†j + cj =
∑
k

φk,j(η
†
k + ηk) (S.40)

Mj ≡ c†j − cj =
∑
k

ψk,j(η
†
k − ηk), (S.41)

where φk,j and ψk,j are determined by Eqs. (S.12) [and
explicitly given in Eqs. (S.16) and (S.17)], we reformulate
Eq. (5) in terms of fermions,

〈σjz〉(t) = 〈0|L1Mj(t)Lj(t)L1|0〉. (S.42)

The RHS of this equation can be evaluated using Wick’s
theorem, which was first used in this context in Ref. [13].
One finds

〈σjz〉(t) =−
∑
k

ψk,jφk,j +
∑
k,k′

ei(Λk−Λk′ )t
[
φk,1φk′,1

× (ψk,jφk′,j + ψk′,jφk,j)
]
. (S.43)

This formula was used for the plots in Fig. 3 of the main
text.

If the transition frequencies Ωj of the qubits can be
tuned individually, one can intentionally detune one
qubit from the rest of the chain and observe how the
system dynamics changes depending on the detuning.

qubit number j

ti
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e
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50

�σj
z�
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FIG. S9. Time evolution of 〈σj
z〉 in a transverse-field Ising

chain of length N = 100 after a quench of the normalized
transverse field ξ = 8 → 1. Values < −0.55 (> −0.52) are
plotted in black (white).

Fig. S8 shows the time evolution of 〈σjz〉(t) after a lo-
cal excitation has been created on the first site for the
same system parameters as in Fig. 3, but with qubit 11
strongly detuned from the others, explicitly Ω11 = 1.3Ωj
for j 6= 11. This local inhomogeneity acts as a barrier
for the propagating excitation and leads to its reflection.
The revival of the measurable observable 〈σ1

z〉(t) takes
place at t ≈ N/2J rather than at t ≈ N/J as in Fig. 3 of
the main text. Thus, strongly detuning one qubit from
the others effectively changes the length of the chain.

V. QUENCH DYNAMICS OF THE
MAGNETIZATION AND THE END-TO-END

CORRELATIONS

We calculate the time evolution of 〈σjz〉 and 〈σ1
xσ

N
x 〉

that follows a sudden change from ξ = ξa to ξ = ξb at
t = 0. We plot and discuss the result for 〈σ1

xσ
N
x 〉 and

provide a plot of 〈σjz〉 in addition to Fig. 4 of the main
text. In the following, quantities belonging to HI,a are
labelled by a (like Λak), and analogously for HI,b.

First, we focus on

〈σjz〉(t) = a〈0|eiHI,btσjze
−iHI,bt|0〉a. (S.44)

To evaluate the RHS, we use the usual mapping to free
fermions [13, 14]: We express σjz by ηbk and η

b†
k whose time

dependence is trivial. Then we express these operators
by ηak and ηa†k whose action on |0〉a is known. One obtains

〈σjz〉(t) = −
∑
k

ψbk,jφ
b
k,j + 2

∑
k,k′

{ψbk,jφbk′,j×

[Xk,k′ cos t(Λbk + Λbk′) + Yk,k′ cos t(Λbk − Λbk′)]
}
. (S.45)

Here,

Xk,k′ =
[
(gbk)THa + (hbk)TGa

][
(Ga)T gbk′ + (Ha)Thbk′

]
,

Yk,k′ =
[
(gbk)THa + (hbk)TGa

][
(Ha)T gbk′ + (Ga)Thbk′

]
,
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FIG. S10. Time evolution of the end-to-end correlator 〈σ1
xσ

N
x 〉

in a transverse-field Ising chain of length N = 30 after a
quench of the normalized transverse field ξ = 8→ 1.5.

and G and H are matrices containing the gk and hk
as columns, respectively. Complementary to Fig. 4 of
the main text, we plot in Fig. S9 〈σjz〉(t) for a quench
ξa = 8 → ξb = 1 in a transverse-field Ising chain with
length N = 100. We focus here on t ≤ T and choose a
relatively large chain to strongly contrast the initial ap-
proach of 〈σjz〉 to a constant value with the effects of the
finite system size. The choice of the non-generic value
ξb = 1 minimizes dispersion of Λk and, thus, of the ve-
locities of the quasiparticles. The features of 〈σjz〉(t) for
t ≤ T described in the main text are more pronounced
and clearly visible in Fig. S9.

Let us now turn to the quench dynamics of the end-
to-end correlator

〈σ1
xσ

N
x 〉(t) = a〈0|eiHI,btσ1

xσ
N
x e
−iHI,bt|0〉a. (S.46)

We remark that similar quantities have been studied in
[17]. To evaluate the RHS of (S.46), we use that HI
commutes with eiπ

∑N
k=1 c

†
kck for all ξ. Consequently, |0〉a

is also an eigenstate of the latter operator [13]. It is now
easy to see that

σNx (t)|0〉a = [c†N (t)− cN (t)]eiπ
∑N

k=1 c
†
kck |0〉a (S.47)

= [c†N (t)− cN (t)]|0〉a, (S.48)

where O(t) = eiHI,btOe−iHI,bt for an operator O. The
same strategy as for 〈σjz〉 leads to

〈σ1
xσ

N
x 〉(t) =

∑
k

φbk,1ψ
b
k,N + 2

∑
k,k′

{φbk,1ψbk′,N×

[Xk,k′ cos t(Λbk + Λbk′)− Yk,k′ cos t(Λbk − Λbk′)]
}
, (S.49)

with Xk,k′ and Yk,k′ defined above. This result is plotted
in Fig. S10 for a quench within the paramagnetic phase.
The observable 〈σ1

xσ
N
x 〉 is an order parameter of the Ising

chain in equilibrium and does not develop a nonzero mean
value for quenches within the paramagnetic phase. How-
ever, at t ≈ N/2v0 = T/2, where v0 = 2J in the para-
magnetic phase, oscillations of 〈σ1

xσ
N
x 〉 arise. After an

abrupt increase, their amplitude decreases again, and this
pattern quasiperiodically repeats with period T = N/v0.
The observed behavior of the end-to-end correlator can,
again, be understood in the QP picture (see [17] for a re-
lated analysis). Among the pairs of momentum-inverted
QP trajectories with the same origin only those origi-
nating at j = N/2 have trajectories hitting the system
boundaries simultaneously. Since only contiguously gen-
erated QPs carry quantum correlations, only the QPs
generated at j = N/2 can build up correlations between
the surface spins which will manifest themselves in a
nonzero value of 〈σ1

xσ
N
x 〉. These QPs arrive for the first

time at the surface spins at t = N/2v0 = T/2, are then
reflected, and build up correlations between the surface
spins each time they have travelled through the whole
chain, that is, after multiples of T = N/v0. This ex-
plains the two different time scales T/2 and T and the
quasiperiodicity (for t > T/2) of the end-to-end correla-
tor 〈σ1

xσ
N
x 〉(t). Slower QPs generated at j = N/2 will also

arrive simultaneously but delayed at the surface spins.
They are responsible for the slow decay of the oscilla-
tions of the correlator for t & T/2 and will, for large t,
eventually smear out the quasiperiodic structure.
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