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In this review, we rederive the controversial influence functional approach of Golubev
and Zaikin (GZ) for interacting electrons in disordered metals in a way that allows us to
show its equivalence, before disorder averaging, to diagrammatic Keldysh perturbation
theory. By representing a certain Pauli factor (δ̃ − 2ρ̃0) occuring in GZ’s effective action
in the frequency domain (instead of the time domain, as GZ do), we also achieve a more
accurate treatment of recoil effects. With this change, GZ’s approach reproduces, in a
remarkably simple way, the standard, generally accepted result for the decoherence rate.
— The main text and appendices A.1 to A.3 of the present review are comparatively
brief, and have been published previously; for convenience, they are included here again
(with minor revisions). The bulk of the review is contained in several additional, lengthy
appendices containing the relevant technical details.
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1. Introduction

A few years ago, Golubev and Zaikin (GZ) developed an influence functional ap-

proach for describing interacting fermions in a disordered conductor.2–7 Their key

idea was as follows: to understand how the diffusive behavior of a given electron

is affected by its interactions with other electrons in the system, which constitute

its effective environment, the latter should be integrated out, leading to an influ-

ence functional, denoted by e−
1
~
(iS̃R+S̃I), in the path integral

∫
D̃′R describing its

dynamics. To derive the effective action (iS̃R + S̃I), GZ devised a strategy which,

when implemented with sufficient care, properly incorporates the Pauli principle —

this is essential, since both the particle and its environment originate from the same

system of indistinguishable fermions, a feature which makes the present problem

conceptually interesting and sets it apart from all other applications of influence

functionals that we are aware of.

GZ used their new approach to calculate the electron decoherence rate γϕ(T )

in disordered conductors, as extracted from the magnetoconductance in the weak
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localization regime, and found it to be finite at zero temperature,2–7 γGZ
ϕ (T →

0) = γ0,GZ
ϕ , in apparent agreement with some experiments.8,9 However, this re-

sult contradicts the standard view, based on the work of Altshuler, Aronov and

Khmelnitskii (AAK),10 that γAAK
ϕ (T → 0) = 0, and hence elicited a considerable

controversy.a GZ’s work was widely questioned,11–17 with the most detailed and

vigorous critique coming from Aleiner, Altshuler and Gershenzon (AAG)18,19 and

Aleiner, Altshuler and Vavilov (AAV),20,21 but GZ rejected each critique4–6 (see

footnote a) with equal vigor. It is important to emphasize that the debate here was

about a well-defined theoretical model, and not about experiments which do or do

not support GZ’s claim.

The fact that GZ’s final results for γGZ
ϕ (T ) have been questioned, however, does

not imply that their influence functional approach, as such, is fundamentally flawed.

On the contrary, we show in this review that it is sound in principle, and that the

standard result γAAK
ϕ (T ) can be reproduced using GZ’s method, provided that it is

applied with slightly more care to correctly account for recoil effects (i.e., the fact

that the energy of an electron changes when it absorbs or emits a photon). We

believe that this finding conclusively resolves the controversy in favor of AAK and

company; hopefully, it will also serve to revive appreciation for the merits of GZ’s

influence functional approach.

The premise for understanding how γAAK
ϕ can be reproduced with GZ’s methods

was that we had carried out a painfully detailed analysis and rederivation GZ’s

approach, as set forth by them in two lengthy papers from 1999 and 2000, henceforth

referred to as GZ993 and GZ00.4 Our aim was to establish to what extent their

method is related to the standard Keldysh diagrammatic approach. As it turned

out, the two methods are essentially equivalent, and GZ obtained unconventional

results only because a certain “Pauli factor” (δ̃ − 2ρ̃0) occuring in S̃R was not

treated sufficiently carefully, where ρ̃0 is the single-particle density matrix. That

their treatment of this Pauli factor was dubious had of course been understood

and emphasized before: first and foremost it was correctly pointed out by AAG18,19

that GZ’s treatment of the Pauli factor caused their expression for γGZ
ϕ to aquire

an artificial ultraviolet divergence, which then produces the term γ0,GZ
ϕ , whereas no

such divergence is present in diagrammatic calculations. GZ’s treatment of (δ̃ − 2ρ̃0)

was also criticized, in various related contexts, by several other authors.11,12,16,17,20

However, none of these works (including our own,16 which, in retrospect, missed

the main point, namely recoil) had attempted to diagnose the nature of the Pauli

factor problem with sufficient precision to allow a successful remedy to be devised

within the influence functional framework.

This will be done in the present review. Working in the time domain, GZ rep-

resent (δ̃ − 2ρ̃0(t)) as 1 − 2n0[h̃0(t)/2T ], where n0 is the Fermi function and h̃0(t)

the free part of the electron energy. GZ assumed that h̃0(t) does not change during

aMost relevant references can be found in the review5 by Golubev, Zaikin and Schön, which gives
a useful overview of the controversy from GZ’s point of view.
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the diffusive motion, because scattering off impurities is elastic. Our diagnosis is

that this assumption unintentionally neglects recoil effects (as first pointed out by

Eriksen and Hedegard11), because the energy of an electron actually does change

at each interaction vertex, i.e., each time it emits or absorbs a photon. The remedy

(not found by Eriksen and Hedegard) is to transform from the time to the frequency

domain, in which (δ̃ − 2ρ̃0) is represented by 1−2n0[~(ε̄− ω̄)] = tanh[~(ε̄− ω̄)/2T ],

where ~ω̄ is the energy change experienced by an electron with energy ~ε̄ at an

interaction vertex. Remarkably, this simple change of representation from the time

to the frequency domain is sufficient to recover γAAK
ϕ . Moreover, the ensuing cal-

culation is free of ultraviolet or infrared divergencies, and no cut-offs of any kind

have to be introduced by hand.

The main text of the present review has two central aims: firstly, to concisely

explain the nature of the Pauli factor problem and its remedy; and secondly, to

present a transparent calculation of γϕ, using only a few lines of simple algebra.

(Actually, we shall only present a “rough” version of the calculation here, which re-

produces the qualitative behavior of γAAK
ϕ (T ); an improved version, which achieves

quantitative agreement with AAK’s result for the magnetoconductance [with an

error of at most 4% for quasi-1-D wires], has been published in a separate analysis

by Marquardt, von Delft, Smith and Ambegaokar.22,23 The latter consists of two

parts, referred to as MDSA-I and DMSA-II below, which use alternative routes to

arrive at conclusions that fully confirm the analysis of this review.)

We have made an effort to keep the main text reasonably short and to the point;

once one accepts its starting point [Eqs. (1)–(4)], the rest of the discussion can easily

be followed step by step. Thus, as far as possible, the main text avoids technical

details of interest only to the experts. These have been included in a set of five

lengthy and very detailed appendices, B to F, in the belief that when dealing with

a controversy, all relevant details should be publicly accessible to those interested in

“the fine print”. For the benefit of those readers (presumably the majority) with no

time or inclination to read lengthy appendices, a concise appendix A summarizes

(without derivations) the main steps and approximations involved in obtaining the

influence functional.

The main text and Appendices A.1 to A.3 have already been published pre-

viously,1 but for convenience are included here again (with minor revisions, and

an extra sketch in Fig. 1), filling the first 23 pages. The content of the remaining

appendices is as follows: in Appendix A.4, we address GZ’s claim that a strictly

nonperturbative approach is needed for obtaining γϕ, and explain why we disagree

(as do many others18–21). In Appendix B, we rederive the influence functional and

effective action of GZ, following their general strategy in spirit, but introducing

some improvements. The most important differences are: (i) instead of using the

coordinate-momentum path integral
∫
DR

∫
DP of GZ, we use a “coordinates-only”

version
∫
D̃′R, since this enables the Pauli factor to be treated more accurately; and

(ii), we are careful to perform thermal weighting at an initial time t0 → −∞ (which

GZ do not do), which is essential for obtaining properly energy-averaged expres-
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sions and for reproducing perturbative results: the standard diagrammatic Keldysh

perturbation expansion for the Cooperon in powers of the interaction propagator

is generated if, before disorder averaging, the influence functional is expanded in

powers of (iS̃R + S̃I)/~. In Appendix C we review how a general path integral ex-

pression derived for the conductivity in Appendix B can be rewritten in terms of

the familiar Cooperon propagator, and thereby related to the standard relations fa-

miliar from diagrammatic perturbation theory. In particular, we review the Fourier

transforms required to obtain a path integral P̃ εeff(τ) properly depending on both

the energy variable ~ε relevant for thermal weighting and the propagation time τ

needed to traverse the closed paths governing weak localization. Appendix D gives

an explicit time-slicing definition of the “coordinates-only” path integral
∫
D̃′R used

in Appendix B. Finally, for reference purposes, we collect in Appendices E and F

some standard material on the diagrammatic technique (although this is bread-

and-butter knowledge for experts in diagrammatic methods and available elsewere,

it is useful to have it summarized here in a notation consistent with the rest of

our analysis). Appendix E summarizes the standard Keldysh approach in a way

that emphasizes the analogy to our influence functional approach, and Appendix F

collects some standard and well-known results used for diagrammatic disorder av-

eraging. Disorder averaging is discussed last for a good reason: one of the appealing

features of the influence functional approach is that most of the analysis can be

performed before disorder averaging, which, if at all, only has to be performed at

the very end.

2. Main Results of Influence Functional Approach

We begin by summarizing the main result of GZ’s influence functional approach.

Our notations and also the content of some of our formulas are not identical to those

of GZ, and in fact differ from their’s in important respects. Nevertheless, we shall

refer to them as “GZ’s results”, since we have (re)derived them (see Appendix B

for details) in the spirit of GZ’s approach.

The Kubo formula represents the DC conductivity σDC in terms of a retarded

current-current correlator 〈[ĵ(1), ĵ(2)]〉. This correlator can (within various approxi-

mations discussed in Appendices B.5.6, B.5.7, B.6.3 and A.3) be expressed as follows

in terms of a path integral P̃ εeff representing the propagation of a pair of electrons

with average energy ~ε, thermally averaged over energies:

σDC =
2

d

∫
dx2j11′ · j 22′

∫
(dε)[−n′(~ε)]

∫ ∞

0

dτP̃ 12′,ε
21′ ,eff(τ) , (1a)

P̃ 12′,ε
21′,eff(τ) = F

∫ RF ( τ
2
)=r1

RF (− τ
2
)=r2′

B

∫ RB( τ
2
)=r1′

RB(− τ
2
)=r2

D̃′R e
1
~
[i(S̃F

0 −S̃B
0 )−(iS̃R+S̃I)](τ) . (1b)

The propagator P̃ 12′,ε
21′,eff(τ), defined for a given impurity configuration, is written

in terms of a forward and backward path integral F
∫
B

∫
D̃′R between the specified
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initial and final coordinates and times. It gives the amplitude for a pair of electron

trajectories, with average energy ~ε, to propagate from r2′ at time −τ/2 to r1 at τ/2

or from r1′ at time τ/2 to r2 at −τ/2, respectively. [The sense in which both τ and ε

can be specified at the same time is discussed in Appendix A.3, and in more detail in

Appendix C.4, Eqs. (C.21) to (C.24)]. We shall call these the forward and backward

paths, respectively, using an index a = F,B to distinguish them. S̃a0 = S̃
F/B
0 are

the corresponding free actions, which determine which paths will dominate the

path integral. The weak localization correction to the conductivity, σWL
DC , arises

from the “Cooperon” contributions to σDC, illustrated in Fig. 1(b), for which the

coordinates r1, r
′
1, r2 and r′2 all lie close together, and which feature self-returning

random walks through the disordered potential landscape for pairs of paths RF/B ,

with path B being the time-reversed version of path F , i.e., RF (t3) = RB(−t3) for

t3 ∈ (−τ/2, τ/2). The effect of the other electrons on this propagation is encoded

in the influence functional e−(iS̃R+S̃I)/~ occuring in Eq. (1b). The effective action

iS̃R + S̃I turns out to have the form [for a more explicit version, see Eq. (A.7) in

Appendix A; or, for an equivalent but more compact representation, see Eqs. (B.93)

ω1
−

ω2
−

BF

ω∼1 ω1
−

ω∼ 1

ω∼ 1ε −

ω∼ 1 − 2ε − ω∼

ω∼1ε −ω∼1

ω∼
1

ε −

ω∼
1

ε − −ω
2
∼

2
∼ωω∼

1
ε − −ω

2
∼

L~FF

j 22’

1’1j
LBB

L~ ~

ε − −

−ω2−

ε −
−ω2∼

BFL~
ε

ε

F
B

ε−ω−−
F: 4

K/R−ω
R/K 3

R iε

ω−ε− ε−ω−−

A K/A

A/K

4

3

j
B:

(b)(a)

Fig. 1. (a) Structure of vertices on the forward or backward contours of Keldysh perturbation
theory. F: the combinations G̃K

iF 4F
L̃R

34F
and G̃R

iF 4F
L̃K

34F
occur if vertex 4 lies on the upper forward

contour. B: the combinations L̃A
4B3G̃K

4BjB
and L̃K

4B3G̃A
4BjB

occur if vertex 4 lies on the lower
contour. Arrows point from the second to first indices of propagators. (b) Sketch of a pair of time-
reversed paths connecting the points at which the current operators j11′ · j22′ act [cf. Eq. (1a)],

decorated by several (wavy) interaction propagators L̃
R/A/K
aa′

(ω). In the Keldysh formalism, the

electron lines represent the electron propagators G̃R/A(ω) or G̃K(ω) = tanh(~ω/2T )[G̃R−G̃A](ω).
The effective action defined in Eqs. (2) to (4a) in effect neglects the frequency transfers ωi in
the arguments of all retarded and advanced electron Green’s functions [G̃R/A(ε − ωi − · · ·) →
G̃R/A(ε)], but, for every occurence of the combination L̃R/A(ωi)G̃

K(ε − ωi), retains it in the
factor tanh[~(ε − ωi)/~] of the accompanying G̃K function. The latter prescription ensures that
a crucial feature of the Keldysh approach is retained in the influence functional formalism, too,
namely that all integrals

∫
dωi over frequency transfer variables are limited to the range |~ωi| . T

[which is why the neglect of ωi in G̃R/A(ε − ωi − · · ·) is justified]. In contrast, GZ also neglect
the −ωi in tanh[~(ε − ωi)/~] [see Sec. 4], which amounts to neglecting recoil. As a result, their∫

dωi integrals are no longer limited to |~ωi| . T , i.e., artificial ultraviolet divergencies occur,

which produce GZ’s temperature-independent contribution γ0,GZ
ϕ to the decoherence rate [see

Eq. (11)]. Thus, γ0,GZ
ϕ is an artefact of GZ’s neglect of recoil, as is their claimed “decoherence at

zero temperature”.
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and (B.96) of Sec. B.6.3]:

{
iS̃R(τ)

S̃I(τ)

}
= −1

2
i
∑

a,a′=F,B

sa

∫ τ
2

− τ
2

dt3a

∫ t3a

− τ
2

dt4a′

{
L̃a′3a4a′

sa′ L̃K3a4a′

}
. (2)

Here sa stands for sF/B = ±1, and the shorthand L̃3a4′

a
= L̃[t3a − t4a′

,Ra(t3a) −
Ra′(t4a′

)] describes, in the coordinate-time representation, an interaction propaga-

tor linking two vertices on contours a and a′. It will be convenient below to Fourier

transform to the momentum-freqency representation, where the propagators L̄K
and L̄a′ can be represented as follows [(dω̄)(dq̄) ≡ (dω̄dq̄)/(2π)4]:

L̃K3a4a′
≡
∫

(dω̄)(dq̄)ei(q̄·[R
a(t3a )−Ra′

(t4
a′

)]−ω̄(t3a−t4
a′

))L̄Kq̄ (ω̄) , (3a)

L̃a′3a4a′
≡
{

[(δ̃ − 2ρ̃0)L̃R]3a4F if a′ = F ,

[L̃A(δ̃ − 2ρ̃0)]4B3a if a′ = B ,
(3b)

≡
∫

(dω̄)(dq̄)eisa′ (q̄·[Ra(t3a )−Ra′

(t4
a′

)]−ω̄(t3a−t4
a′

))L̄a′q̄ (ω̄) . (3c)

[Note the sign sa′ in the Fourier exponential in Eq. (3c); it reflects the opposite

order of indices in Eq. (3b), namely 34 for F versus 43 for B.] Here L̃K is the

Keldysh interaction propagator, while L̃F/B , to be used when time t4a′
lies on

the forward or backward contours, respectively, represent “effective” retarded or

advanced propagators, modified by a “Pauli factor” (δ̃ − 2ρ̃0) (involving a Dirac-

delta δ̃ij and single-particle density matrix ρ̃0
ij in coordinate space), the precise

meaning of which will be discussed below. L̄K,R,Aq̄ (ω̄) denote the Fourier transforms

of the standard Keldysh, retarded, or advanced interaction propagators. For the

screened Coulomb interaction in the unitary limit, they are given by

L̄Rq̄ (ω̄) = [L̄Aq̄ (ω̄)]∗ = −
E0
q̄ − iω̄

2νE0
q̄

= −
[D̄0
q̄(ω̄)]−1

2νE0
q̄

, (4a)

L̄Kq̄ (ω̄) = 2i coth(~ω̄/2T )Im[L̄Rq̄ (ω̄)] , (4b)

C̄0
q̄(ω̄) =

1

Eq̄ − iω̄
, D̄0

q̄(ω̄) =
1

E0
q̄ − iω̄

, (4c)

E0
q̄ = Dq̄2 , Eq̄ = Dq̄2 + γH , (4d)

where, for later reference, we have also listed the Fourier transforms of the bare

diffuson D̄0 and Cooperon C̄0 (where γH is the dephasing rate of the latter in the

presence of a magnetic field, D the diffusion constant and ν the density of states

per spin). Finally, L̄a′q̄ (ω̄) in Eq. (3c) is defined as

LF/Bq̄ (ω̄) = tanh[~(ε− ω̄)/2T ]L̄R/Aq̄ (ω̄) , (4e)
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where ~ε is the same energy as that occuring in the thermal weighting factor

[−n′(~ε)] in Eq. (1a).

Via the influence functional, the effective action (2) concisely incorporates the

effects of interactions into the path integral approach. S̃I describes the classical

part of the effective environment, and if one would replace the factor coth(~ω̄/2T )

in L̃Kq̄ (ω̄) by 2T/~ω̄ (as is possible for high temperatures) it corresponds to the

contribution calculated by AAK.10 With S̃R, GZ succeeded to additionally also

include the quantum part of the environment, and in particular, via the Pauli

factor (δ̃ − 2ρ̃0), to properly account for the Pauli principle.

Casual readers are asked to simply accept the above equations as starting point

for the remainder of this review, and perhaps glance through Appendix A to get

an idea of the main steps and approximations involved in deriving them. Those

interested in a detailed derivation are referred to Appendix B (where S̃R/I are

obtained in Sec. B.5.8). It is also shown there [Sec. B.6] that the standard results

of diagrammatic Keldysh perturbation theory can readily be reproduced from the

above formalism by expanding the influence functional e−(iS̃R+S̃I)/~ in powers of

(iS̃R+ S̃I)/~. For present purposes, simply note that such an equivalence is entirely

plausible in light of the fact that our effective action (2) is linear in the effective

interaction propagators L̃, a structure that is typical for generating functionals for

Feynman diagrams.

3. Origin of the Pauli Factor

The occurence of the Pauli factor (δ̃ − 2ρ̃0) in S̃R was first found by GZ in precisely

the form displayed in the position-time representation of the effective action used

in Eq. (2). However, their subsequent treatment of this factor differs from ours, in

a way that will be described below. In particular, they did not represent this factor

in the frequency representation, as in our Eq. (4e), and this is the most important

difference between our analysis and theirs.

The origin of the Pauli factor in the form given by our Eq. (4e) can easily be

understood if one is familiar with the structure of Keldysh perturbation theory.

[For a detailed discussion, see Sec. B.6.2.] First recall two exact relations for the

noninteraction Keldysh electron propagator: in the coordinate-time representation,

it contains a Pauli factor,

G̃Kij =

∫
dxk(G̃

R − G̃A)ik(δ̃ − 2ρ̃0)kj =

∫
dxk(δ̃ − 2ρ̃0)ik(G̃

R − G̃A)kj (5a)

which turns into a tanh in the coordinate frequency representation:

G̃Kij (ω̄) = tanh(~ω̄/2T )[G̃Rij (ω̄) − G̃Aij (ω̄)] . (5b)

Now, in the Keldysh approach, retarded or advanced interaction propagators always

occur [see Fig. 1(a)] together with Keldysh electron propagators, in the combina-

tions G̃KiF 4F
L̃R34F

or L̃A4B3G̃
K
4BjB

, where the indices denote coordinates and times.

[Likewise, the Keldysh interaction propagators always come in the combinations
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G̃RiF 4F
L̃K34F

or L̃K4B3G̃
A
4BjB .] In the momentum-frequency representation, the combi-

nations involving G̃K therefore turn into LR/Aq̄ (ω̄)
[
ḠR− ḠA

]
q−q̄

(ε̄− ω̄) tanh[~(ε̄−
ω̄)/2T ]. Thus, in the frequency representation, the Pauli factor is represented as

tanh[~(ε̄ − ω̄)/2T ]. Here the variable ~ε̄ represents the energy of the electron line

on the upper (or lower) Keldysh contour before it enters (or after it leaves) an

interaction vertex at which its energy decreases (or increases) by ~ω̄ [see Fig. 1(a)].

The subtraction of ω̄ in the argument of tanh thus reflects the physics of recoil:

emitting or absorbing a photon causes the electron energy to change by ~ω̄, and

it is this changed energy ~(ε̄− ω̄) that enters the Fermi functions for the relevant

final or initial states.

Of course, in Keldysh perturbation theory, ~ε̄ will have different values from one

vertex to the next, reflecting the history of energy changes of an electron line as it

proceeds through a Feynman diagram [as illustrated in Fig. 1(b)]. It is possible to

neglect this complication in the influence functional approach, if one so chooses, by

always using one and the same energy in Eq. (4e), which then should be chosen to

be the same as that occuring in the thermal weighting factor [−n′(~ε)], i.e., ~ε̄ = ~ε.

This approximation, which we shall henceforth adopt, is expected to work well if

the relevant physics is dominated by low frequencies, at which energy transfers

between the two contours are sufficiently small [~(ε̄− ε) � T , so that the electron

“sees” essentially the same Fermi function throughout its motion. [For a detailed

discussion of this point, see Appendix B.6.2.]

Though the origin and neccessity of the Pauli factor is eminently clear when seen

in conjunction with Keldysh perturbation theory, it is a rather nontrivial matter

to derive it cleanly in the functional integral approach [indeed, this is the main

reason for the length of our appendices!]. The fact that GZ got it completely right

in the position-time representation of Eq. (2) is, in our opinion, a significant and

important achievement. It is regrettable that they did not proceed to consider the

frequency representation (4e), too, which in our opinion is more useful.

4. Calculating τϕ à la GZ

To calculate the decoherence rate γϕ = 1/τϕ, one has to find the long-time decay of

the Cooperon contribution to the propagator P̃ εeff(τ) of Eq. (1). To do this, GZ pro-

ceeded as follows: using a saddle-point approximation for the path integral for the

Cooperon, they replaced the sum over all pairs of self-returning paths RF/B(t3F/B
)

by just the contribution 〈e− 1
~
(iS̃R+S̃I)(τ)〉rw of the classical “random walk” paths

Rrw(t) picked out by the classical actions S̃a0 , namely RF (t3F ) = Rrw(t3F ) and

RB(t3B ) = Rrw(−t3B ), for which the paths on the forward and backward Keldysh

contours are time-reversed partners. The subscript “rw” indicates that each such

classical path is a self-returning random walk through the given disorder poten-

tial landscape, and 〈 〉rw means averaging over all such paths. Next, in the spirit

of Chakravarty and Schmid,24 they replace the average of the exponent over all

time-reversed pairs of self-returning random walks, by the exponent of the average,
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e−F (τ), where F (τ) = 〈iS̃R + S̃I〉rw/~ (cf. Eq. (67) of GZ993). This amounts to

expanding the exponent to first order, then averaging, and then reexponentiating.

The function F (τ) thus defined increases with time, starting from F (0) = 0, and

the decoherence time τϕ can be defined as the time at which it becomes of order

one, i.e., F (τϕ) ≈ 1.

To evaluate 〈iS̃R + S̃I〉rw, GZ Fourier transform the functions L̃3a4′

a
=

L̃[t34,R
a(t3) − Ra′(t4)] occuring in S̃R/I , and average the Fourier exponents us-

ing24 the distribution function for diffusive motion, which gives the probability that

a random walk that passes point Rrw(t4) at time t4 will pass point Rrw(t3) at time

t3, i.e., that it covers a distance R = Rrw(t3) −Rrw(t4) in time |t34|:

〈eiq̄·[Rrw(t3)−Rrw(t4)]〉rw '
∫
dd̄R

(
π

D|t34|

)d̄/2
e−R

2/(4D|t34|) eiq̄·R

= e−q̄
2D|t34| → C̃0

q̄(|t34|) = e−Eq̄|t34| . (6)

(Here t34 = t3 − t4.) The arrow in the second line makes explicit that if we also ac-

count for the fact that such time-reversed pairs of paths are dephased by a magnetic

field, by adding a factor e−γH |t34|, the result is simply equal to the bare Cooperon

in the momentum-time representation.

Actually, the above way of averaging is somewhat inaccurate, as was pointed

out to us by Florian Marquardt: it neglects the fact that the diffusive trajectories

between t3 and t4 are part of a larger, self-returning trajectory, starting and ending

at r1 ' r2 at times ∓1/2τ . It is actually not difficult to include this fact, see

MDSA-I,22,23 and this turns out to quantitatively improve the numerical prefactor

for τϕ (e.g., in Eq. (18) below). However, for the sake of simplicity, we shall here

be content with using Eq. (6), as GZ did.

Finally, GZ also assumed that the Pauli factor (δ̃ − 2ρ̃0) in S̃R remains un-

changed throughout the diffusive motion: they use a coordinate-momentum path

integral
∫
DR

∫
DP [instead of our coordinates-only version

∫
D̃′R], in which

(δ̃ − 2ρ̃0) is replaced by [1 − 2n0(h̃0)] = tanh(h̃0/2T ), and the free-electron en-

ergy h̃0

[
R(ta),P (ta)

]
is argued to be unchanged throughout the diffusive motion,

since impurity scattering is elastic [cf. p. 9205 of GZ993: “n depends only on the

energy and not on time because the energy is conserved along the classical path”].

Indeed, this is true between the two interaction events at times t3 and t4, so that

the averaging of Eq. (6) is permissible. However, as emphasized above, the full tra-

jectory stretches from −τ/2 to t4 to t3 to τ/2, and the electron energy does change,

by ±~ω̄, at the interaction vertices at t4 and t3. Thus, GZ’s assumption of a time-

independent Pauli factor neglects recoil effects. As argued in the previous section,

these can be straightforwardly taken into account using Eq. (4e), which we shall

use below. In contrast, GZ’s assumption of time-independent n amounts dropping

the −~ω̄ in our tanh[~(ε− ω̄)/2T ] function.



March 27, 2008 16:20 WSPC/140-IJMPB 03908

736 J. von Delft

If one uses GZ’s assumptions to average Eq. (2), but uses the proper tanh[~(ε−
ω̄)/2T ] function, one readily arrives at

{
〈iS̃R〉rw
〈S̃I〉rw

}
= 2 Re

[
−1

2
i

∫
(dω̄)(dq̄)

{
L̄Fq̄ (ω̄)

L̄Kq̄ (ω̄)

}
[f self − fvert](τ)

]
, (7)

where f self − fvert are the first and second terms of the double time integral

∫ τ
2

− τ
2

dt3

∫ t3

− τ
2

dt4 e
−iω̄t34〈eiq·[Rrw(t3)−Rrw(t4)] − eiq·[Rrw(−t3)−Rrw(t4)]〉rw , (8)

corresponding to self-energy (a = a′ = F ) and vertex (a 6= a′ = F ) contributions,

and the 2Re[ ] in Eq. (7) comes from adding the contributions of a′ = F and B.

Performing the integrals in Eq. (8), we find

f self(τ) = C̄0
q̄(−ω̄)τ + [C̄0

q̄(−ω̄)]2[e−τ(Eq̄+iω̄) − 1] , (9a)

fvert(τ) = C̄0
q̄(ω̄)

[
e−iω̄τ − 1

−iω̄ +
e−Eq̄τ − 1

Eq̄

]
. (9b)

Of all the terms in Eqs. (9), the first term of f self , which is linear in τ , clearly

grows most rapidly, and hence dominates the leading long-time behavior. Denoting

the associated contribution to Eq. (7) by (1/~)〈iS̃R/S̃I〉leading,self
rw ≡ τγ

R/I,self
ϕ , the

corresponding rates γ
R/I,self
ϕ obtained from Eqs. (7) and (9) are:

γR,selfϕ =
1

~

∫
(dω̄)(dq̄) tanh

[
~(ε− ω̄)

2T

]
2 Re

[
i/2(E0

q̄ − iω̄)

2νE0
q̄(Eq̄ + iω̄)

]
, (10a)

γI,selfϕ =
1

~

∫
(dω̄)(dq̄) coth

[
~ω̄

2T

]
2 Re

[
ω̄

2νE0
q̄(Eq̄ + iω̄)

]
. (10b)

Let us compare these results to those of GZ, henceforth using γH = 0. Firstly, both

our γI,selfϕ and γR,selfϕ are nonzero. In contrast, in their analysis, GZ concluded that

〈S̃R〉rw = 0. The reason for the latter result is, evidently, their neglect of recoil

effects: indeed, if we drop the −~ω̄ from the tanh-factor of Eq. (10a), we would find

γRϕ = 0 and thereby recover GZ’s result, since the real part of the factor in square

brackets is odd in ω̄.

Secondly and as expected, we note that Eq. (10b) for γI,selfϕ agrees with that of

GZ, as given by their equation (71) of GZ993 for 1/τϕ, i.e., γI,selfϕ = γGZ
ϕ . [To see

the equivalence explicitly, use Eq. (A.9).] Noting that the
∫
dω̄-integral in Eq. (10b)

evidently diverges for large ω̄, GZ cut off this divergence at 1/τel (arguing that

the diffusive approximation only holds for time-scales longer than τel, the elastic

scattering time). For example, for quasi-1-dimensional wires, for which
∫

(dq̄) =

a−2
∫
dq/(2π) can be used (a2 being the cross section, so that σ1 = a2σDrude

DC is

the conductivity per unit length, with σDrude
DC = 2e2νD), they obtain (cf. (76) of
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GZ993):

1

τGZ
ϕ

' e2
√

2D

~σ1

∫ 1
τel

1

τGZ
ϕ

(dω̄)

ω1/2
coth

[
~ω̄

2T

]
' e2

π~σ1

√
2D

τel




2T
√
τelτGZ

ϕ

~
+ 1


 . (11)

[The use of a self-consistently-determined lower frequency cut-off is explained in

Sec. 6]. Thus, they obtained a temperature-independent contribution γ0,GZ
ϕ from

the +1 term, which is the result that ignited the controversy.

Thirdly, however, we observe that, due to the special form of the retarded in-

teraction propagator in the unitary limit, the real parts of the last factors in square

brackets of Eqs. (10a) and (10b) are actually equal (for γH = 0). Thus, the ultravio-

let divergence of γI,selfϕ is cancelled by a similar divergence of γR,selfϕ . Consequently,

the total decoherence rate coming from self-energy terms, γself
ϕ = γI,selfϕ + γR,selfϕ , is

free of ultraviolet divergencies. Thus we conclude that the contribution γ0,GZ
ϕ found

by GZ is an artefact of their neglect of recoil, as is their claimed “decoherence at

zero temperature”.

5. Dyson Equation and Cooperon Self Energy

The above results for γR,selfϕ + γI,selfϕ turn out to agree completely with those of a

standard calculation of the Cooperon self energy Σ̃ using diagrammatic impurity

averaging [details of which are summarized in Appendix F]. We shall now summarize

how this comes about.

Calculating Σ̃ is an elementary excercise within diagrammatic perturbation the-

ory, first performed by Fukuyama and Abrahams.25 However, to facilitate compar-

ison with the influence functional results derived above, we proceed differently: we

have derived [Sec. B.6.1] a general expression,b before impurity averaging, for the

Cooperon self-energy of the form Σ̃ =
∑

aa′ [Σ̃
I
aa′ +Σ̃Raa′ ], which keeps track of which

terms originate from iS̃R or S̃I , and which contours a, a′ = F/B the vertices sit

on. This expression agrees, as expected, with that of Keldysh perturbation theory,

before disorder averaging; it is given by Eq. (A.10) and illustrated by Fig. A.1 in

Appendix A. We then disorder, average using standard diagrammatic techniques.

For reference purposes, some details of this straightforward excercise are collected

in Appendix F.2.

For present purposes, we shall consider only the “self-energy contributions”

(a = a′) to the Cooperon self energy, and neglect the “vertex contributions”

(a 6= a′), since in the above, we likewise extracted γ
R/I
ϕ from the self-energy con-

tributions to the effective action, 〈S̃R/I〉leading,self
rw . After impurity averaging, the

Cooperon then satisfies a Dyson equation of standard form, C̄self
q (ω) = C̄0

q(ω) +

bThe expressions for Σ̃ that we published in Ref. 16, Eqs. (A.16), contain incorrect signs and
missing factors of 1/2, and should be replaced by Eqs. (A.10) of this review.
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C̄0
q(ω)Σ̄self

q (ω)C̄self
q (ω), with standard solution:

C̄self
q (ω) =

1

Eq − iω − Σ̄self
q (ω)

, (12)

where Σ̄R/I,self =
∑

a Σ̄
R/I,self
aa , with Σ̄

R/I,self
q,FF (ω) = [Σ̄

R/I,self
q,BB (−ω)]∗, and

Σ̄I,selfq,FF (ω) ≡ −1

~

∫
(dω̄)(dq̄) coth

[
~ω̄

2T

]
Im[L̄Rq̄ (ω̄)]C̄0

q−q̄(ω − ω̄) , (13a)

Σ̄R,selfq,FF (ω) ≡ 1

~

∫
(dω̄)(dq̄)

{
tanh

[
~(ε+ 1

2ω − ω̄)

2T

]
1

2
iL̄Rq̄ (ω̄).

× [C̄0
q−q̄(ω − ω̄) + [D̄0

q̄(ω̄)]2([C̄0
q(ω)]−1 + [D̄0

q̄(ω̄)]−1)]

}
. (13b)

In Eq. (13b), the terms proportional to (D̄0)2l[(C̄0)−1 + (D̄0)−1] stem from the so-

called Hikami contributions, for which an electron line changes from G̃R/A to G̃A/R

to G̃R/A at the two interaction vertices. As correctly emphasized by AAG18,19

and AAV,20 such terms are missed by GZ’s approach of averaging only over time-

reversed pairs of paths, since they stem from paths that are not time-reversed pairs.

Now, the standard way to define a decoherence rate for a Cooperon of the form

(12) is as the “mass” term that survives in the denominator when ω = Eq = 0,

i.e., γself
ϕ = −Σ̄self

0
(0) = −2 Re[Σ̄I+R,self

0,FF (0)]. In this limit, the contribution of the

Hikami terms vanishes identically, as is easily seen by using the last of Eqs. (4a), and

noting that Re[i(D̄0)−1(D̄0)2(D̄0)−1] = Re[i] = 0. (The realization of this fact came

to us as a surprise, since AAG and AAV had argued that GZ’s main mistake was

their neglect of Hikami terms,18–20 thereby implying that the contribution of these

terms is not zero, but essential.) The remaining (non-Hikami) terms of Eq. (13b)

agree with the result for Σ̃ of AAV20 and reproduce Eqs. (10) given above, in other

words:

γself
ϕ = [−Σ̄self

0
(0)] =

1

τ~
〈iS̃R + S̃I〉leading, self

rw . (14)

Thus, the Cooperon mass term −Σ̄self
0

(0) agrees identically with the coefficient of

τ in the leading terms of the averaged effective action of the influence functional.

This is no coincidence: it simply reflects the fact that averaging in the exponent

amounts to reexponentiating the average of the first order term of an expansion

of the exponential, while in calculating the self energy, one of course also averages

the first order term of the Dyson equation. It is noteworthy, though, that for the

problem at hand, where the unitary limit of the interaction propagator is considered,

it suffices to perform this average exclusively over pairs of time-reversed paths —

more complicated paths are evidently not needed, in contrast to the expectations

voiced by AAG18,19 and AAV.20

The latter expectations do apply, however, if one consideres forms of the in-

teraction propagator L̄Rq̄ (ω̄) more general than the unitary limit of (4a) (i.e., not
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proportional to
[
D̄0
q̄(ω̄)]−1). Then, the Hikami contribution to γself

ϕ = −Σ̄self
0

(0)

indeed does not vanish; instead, by noting that for ω = q = γH = 0 the second line

of Eq. (13b) can always be written as 2Re[D̄0
q̄(ω̄)], we obtain

γself
ϕ =

1

~

∫
(dω̄)(dq̄)

{
coth

[
~ω̄

2T

]
+ tanh

[
~(ε− ω̄)

2T

]}

× Im
[
L̄Rq̄ (ω̄)

] 2E0
q̄

(E0
q̄)

2 + ω̄2
, (15)

which is the form given by AAV.20

6. Vertex Contributions

Eq. (10b) for γI,selfϕ has the deficiency that its frequency integral is infrared diver-

gent (for ω̄ → 0) for the quasi-1 and 2-dimensional cases, as becomes explicit once

its q̄-integral has been performed [as in Eq. (11)]. This problem is often dealt with

by arguing that small-frequency environmental fluctuations that are slower than

the typical time scale of the diffusive trajectories are, from the point of view of the

diffusing electron, indistuingishable from a static field and hence cannot contribute

to decoherence. Thus, a low-frequency cutoff γϕ is inserted by hand into Eqs. (10)

[i.e.,
∫
0
dω̄ →

∫
γϕ
dω̄], and γϕ determined selfconsistently. This procedure was mo-

tivated in quite some detail by AAG,18,19 and also adopted by GZ in GZ993 [see

Eq. (11) above]. However, as emphasized by GZ in a subsequent paper, GZ00,4 it

has the serious drawback that it does not necessarily reproduce the correct func-

tional form for the Cooperon in the time domain; e.g., in d̄ = 1 dimensions, the

Cooperon is known10 to decay as e−a(τ/τϕ)3/2

, i.e., with a nontrivial power in the

exponent, whereas a “Cooperon mass” would simply give e−τ/τϕ .

A cheap fix for this problem would be to take the above idea of a self-consistent

infrared cutoff one step further, arguing that the Cooperon will decay as e−τγ
self
ϕ (τ),

where γself
ϕ (τ) is a time-dependent decoherence rate, whose time-dependence enters

via a time-dependent infrared cutoff. Concretely, using Eqs. (13) and (10), one

would write

γself
ϕ (τ) = 2

∫ ∞

1/τ

(dω̄)ω̄

{
coth

[
~ω̄

2T

]
+

1

2

∑

s=±

s tanh

[
~(ε− sω̄)

2T

]}

×
∫

(dq̄)

~ν

1

(Dq̄2)2 + ω̄2
. (16)

It is straightforward to check [using steps analogous to those used below to obtain

Eq. (18)] that in d̄ = 1 dimensions, the leading long-time dependence is γself
ϕ (τ) ∝

τ1/2, so that this cheap fix does indeed produce the desired e−a(τ/τϕ)3/2

behavior.

The merits of this admittedly rather ad hoc cheap fix can be checked by doing

a better calculation: it is well-known that the proper way to cure the infrared prob-

lems is to include “vertex contributions”, having interactions vertices on opposite
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contours. In fact, the original calculation of AAK10 in effect did just that. Likewise,

although GZ neglected vertex contributions in GZ99,3 they subsequently included

them in GZ00,4 exploiting the fact that in the influence functional approach, this

is as straightforward as calculating the self-energy terms: one simply has to in-

clude the contributions to 〈iS̃R/S̃I〉rw of the vertex function −fvert in Eq. (7),

too. The leading contribution comes from the first term in Eq. (9b), to be called

〈iS̃R/S̃I〉leading,vert
rw , which gives a contribution identical to 〈iS̃R/S̃I〉leading, self

rw , but

multiplied by an extra factor of − sin(ω̄τ)/ω̄τ under the integral. Thus, if we collect

all contributions to Eq. (7) that have been termed “leading”, our final result for

the averaged effective action is 1/~〈iS̃R + S̃I〉leading
rw ≡ Fd̄(τ), with

Fd̄(τ) = τ

∫
(dω̄)ω̄

{
coth

[
~ω̄

2T

]
+ tanh

[
~(ε− ω̄)

2T

]}(
1 − sin(ω̄τ)

ω̄τ

)

×
∫

(dq̄)

~ν

1

(Dq̄2)2 + ω̄2
. (17)

This is our main result: an expression for the decoherence function Fd̄(τ) that

is both ultraviolet and infrared convergent (as will be checked below), due to the

(coth + tanh) and (1−sin)-combinations, respectively. Comparing this to Eqs. (16),

we note that Fd̄(τ) has precisely the same form as τγself
ϕ (τ), except that the infrared

cutoff now occurs in the
∫
(dω̄) integrals through the (1 − sin) combination. Thus,

the result of including vertex contributions fully confirms the validity of using the

cheap fix replacement
∫
0(dω̄) →

∫
1/τ (dω̄), the only difference being that the cutoff

function is smooth instead of sharp (which will somewhat change the numerical

prefactor of τϕ).

It turns out to be possible to also obtain Eq. (17) [and in addition all the

“subleading” terms of Eq. (7)] by purely diagrammatic means: to this end, one has

to set up and solve a Bethe-Salpeter equation. This is a Dyson-type equation, but

with interaction lines transferring energies between the upper and lower contours,

so that a more general Cooperon C̄εq(Ω1,Ω2), with three frequency variables, is

needed. Such an analysis will be published in DMSA-II.22,23

To wrap up our rederivation of standard results, let us perform the integrals

in Eq. (17) for Fd̄(τ) for the quasi-1-dimensional case d̄ = 1. The
∫
(dq̄)-integral

yields ω̄−3/2
√
D/2/(σ1~/e2). To do the frequency integral, we note that since

the (coth + tanh)-combination constrains the relevant frequencies to be |~ω̄| . T ,

the integral is dominated by the small-frequency limit of the integrand, in which

coth(~ω̄/2T ) ' 2T/~ω̄, whereas tanh, making a subleading contribution, can be

neglected. The frequency integral then readily yields

F1(τ) =
4

3
√
π

Tτ/~

g1(
√
Dτ )

≡ 4

3
√
π

(
τ

τϕ

)3/2

, (18)

so that we correctly obtain the known e−a(τ/τϕ)3/2

decay for the Cooperon. Here

gd̄(L) = (~/e2)σd̄L
d̄−2 represents the dimensionless conductance, which is � 1
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for good conductors. The second equality in Eq. (18) defines τϕ, where we have

exploited the fact that the dependence of F1 on τ is a simple τ3/2 power law,

which we made dimensionless by introducing the decoherence time τϕ. [Following

AAG,18,19 we purposefully arranged numerical prefactors such that none occur in

the final Eq. (19) for τϕ below.] Setting τ = τϕ in Eq. (18) we obtain the self-

consistency relation and solution (cf. Eq. (2.38a) of AAG18,19):

1

τϕ
=

T/~

gd̄(
√
Dτϕ)

, ⇒ τϕ =

(
~

2σ1

Te2
√
D

)2/3

. (19)

The second relation is the celebrated result of AAK, which diverges for T → 0. This

completes our recalculation of γAAK
ϕ using GZ’s influence functional approach.

Eq. (18) can be used to calculate the magnetoconductance for d̄ = 1 via

σWL
DC (H) = −σ

Drude
DC

πν~

∫ ∞

0

dτC̃0
r=0(τ)e

−F1(τ) . (20)

(Here, of course, we have to use γH 6= 0 in C̃0
r=0(τ). Comparing the result to

AAK’s result for the magnetoconductance (featuring an Ai′ function for d̄ = 1),

one finds qualitatively correct behavior, but deviations of up to 20% for small

magnetic fieldsH . The reason is that our calculation was not sufficiently accurate to

obtain the correct numerical prefactor in Eq. (18). [GZ did not attempt to calculate

it accurately, either]. It turns out (see MDSA-I22,23) that if the averaging over

random walks of Eq. (6) is done more accurately, following Marquardt’s suggestion

of ensuring that the random walks are self-returning, the prefactor changes in such

a way that the magnetoconductance agrees with that of AAK to within an error of

at most 4%. Another improvement that occurs for this more accurate calculation

is that the results are well-behaved also for finite γH , which is not the case for

our present Eq. (10a): for γH 6= 0, the real part of the square brackets contains a

term proportional to γH/E
0
q̄, which contains an infrared divergence as q̄ → 0. This

problem disappears if the averaging over paths is performed more accurately, see

MDSA-I.22,23

7. Discussion and Summary

We have shown [in Appendices B to D, as summarized in Appendix A] that GZ’s

influence functional approach to interacting fermions is sound in principle, and that

standard results from Keldysh diagrammatic perturbation theory can be extracted

from it, such as the Feynman rules, the first order terms of a perturbation expansion

in the interaction, and the Cooperon self energy.

Having established the equivalence between the two aproaches in general terms,

we were able to identify precisely why GZ’s treatment of the Pauli factor (δ̃ − 2ρ̃0)

occuring S̃R was problematic: representing it in the time domain as tanh[h̃0(t)/2T ],

they assumed it not to change during diffusive motion along time-reversed paths.

However, they thereby neglected the physics of recoil, i.e., energy changes of the
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diffusing electrons by emission or absorption of photons. As a result, GZ’s calcula-

tion yielded the result 〈iS̃GZ
R 〉rw = 0. The ultraviolet divergence in 〈S̃GZ

I 〉rw, which

in diagrammatic approaches is cancelled by terms involving a tanh function, was

thus left uncancelled, and instead was cut off at ω̄ ' 1/τel, leading to the conclusion

that γGZ
ϕ (T → 0) is finite.

In this review, we have shown that the physics of recoil can be included very

simply by passing from the time to the frequency representation, in which (δ̃ − 2ρ̃0)

is represented by tanh[~(ε − ω̄)/2T ]. Then 〈iS̃R〉rw is found not to equal to zero;

instead, it cancels the ultraviolet divergence of 〈S̃I 〉rw, so that the total rate

γϕ = γIϕ + γRϕ reproduces the classical result γAAK
ϕ , which goes to zero for T → 0.

Interestingly, to obtain this result, it was sufficient to average only over pairs of

time-reversed paths; more complicated paths, such as those represented by Hikami

terms, are evidently not needed. (However, this simplification is somewhat fortu-

itous, since it occurs only when considering the unitary limit of the interaction

propagator; for more general forms of the latter, the contribution of Hikami terms

is essential, as emphasized by AAG and AAV.18–20)

The fact that the standard result for γϕ can be reproduced from the influence

functional approach is satisfying, since this approach is appealingly clear and simple,

not only conceptually, but also for calculating γϕ. Indeed, once the form of the

influence functional (2) has been properly derived (wherein lies the hard work), the

calculation of 〈iS̃R + S̃I〉rw requires little more than knowledge of the distribution

function for a random walk and can be presented in just a few lines [Sec.4]; indeed,

the algebra needed for the key steps [evaluating Eq. (7) to get the first terms of

(9), then finding (10) and (17)] involves just a couple of pages.

We expect that the approach should be similarly useful for the calculation of

other physical quantities governed by the long-time, low-frequency behavior of the

Cooperon, provided that one can establish unambiguously that it suffices to include

the contributions of time-reversed paths only — because Hikami-like terms, though

derivable from the influence functional approach too, can not easily be evaluated in

it; for the latter task, diagrammatic impurity averaging still seems to be the only

reliable tool.
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Appendix A. Outline of GZ’s Influence Functional Approach

Without dwelling on details of derivations, we outline in this appendix how the

influence functional presented in Sec. 2 is derived. (A similar summary is contained

in a previous paper by this author16 (see footnote b on p. 11); however, it is incom-

plete, in that we have introduced important improvements since.) Before we start,

let us point out the two main differences between our formulation and that of GZ:

(i) GZ formulated the Cooperon propagator in terms of a coordinate-momentum

path integral
∫
DR

∫
DP , in which (δ̃ − 2ρ̃0) is represented as [1 − 2n0(h̃0)] =

tanh(h̃0/2T ), where the free-electron energy h̃0[R(ta),P (ta)] depends on position

and momentum. This formulation makes it difficult to treat the Pauli factor with

sufficient accuracy to include recoil. In contrast, we achieve the latter by using a

coordinates-only version
∫
D̃′R, in which exact relations between noninteracting

Green’s functions make an accurate treatment of the Pauli factor possible, upon

Fourier-transforming the effective action to the frequency domain.

(ii) GZ effectively performed thermal weighting at an initial time t0 that is not sent

to −∞, but (in the notation of the main text) is set to t0 = −τ/2; with the latter

choice, it is impossible to correctly reproduce the first (or higher) order terms of a

perturbation expansion. GZ’s claim in GZ004 that they have reproduced these is

incorrect (see end of Appendix C.3), since their time integrals have −τ/2 as the

lower limit, whereas in the Keldysh approach they run from −∞ to +∞. We have

found that with some (but not much) extra effort, it is possible to properly take

the limit t0 → −∞, to correctly recover the first order perturbation terms [Ap-

pendix C.3] and to express the conductivity in a form containing thermal weighting

in the energy domain explicitly in the form of a factor
∫
(dε)[−n′

0(~ε)]P̃
ε, where P̃ ε

is an energy-dependent path integral, obtained by suitable Fourier transformation

[Appendix C.4].

A.1. Outline of derivation of influence functional

Consider a disordered system of interacting fermions, with Hamiltonian Ĥ = Ĥ0 +

Ĥi:

Ĥ0 =

∫
dx ψ̂†(x)h0(x)ψ̂(x) , (A.1a)
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Ĥi =
e2

2

∫
dx1dx2 : ψ̂†(x1)ψ̂(x1) : Ṽ int

12 : ψ̂†(x2)ψ̂(x2) : (A.1b)

Here
∫
dx =

∑
σ

∫
dr, and ψ̂(x) ≡ ψ̂(r, σ) is the electron field operator for creating

a spin-σ electron at position r, with the following expansion in terms of the exact

eigenfunctions ψλ(x) of h0(x) = (−~
2/2m)∇2

r + Vimp(r) − µ:

ψ̂(x) =
∑

λ

ψλ(x)ĉλ , [h0(x) − ξλ]ψλ(x) = 0 . (A.2)

The interaction potential Ṽ int
12 = Ṽ int(|r1 − r2|) acts between the normal-ordered

densities at r1 and r2. The Kubo formula for the DC conductivity of a d-dimensional

conductor gives

σDC = −Re

[
lim
ω0→0

1

dω0

∑

σ1

∫
dx2j11′ · j22′ J̃11′,22(ω0)|x1=x1′

]
, (A.3a)

J̃11′,22′(ω0) =

∫ ∞

−∞

dt12e
iω0t12θ(t12)C̃[11′,22′] , (A.3b)

C̃[11′,22′] ≡
1

~
〈[ψ̂†(t1, x1′)ψ̂(t1, x1), ψ̂

†(t2, x2′)ψ̂(t2, x2)]〉H , (A.3c)

where j11′ ≡ (−ie~/2m)(∇1 −∇1′) and a uniform applied electric field E(ω0) was

represented using a uniform, time-dependent vector potential, E(ω0) = iω0A(ω0).

A path integral representation for C̃[11′,22′] can be derived using the following strat-

egy, adapted from GZ993: (1) introduce a source term into the Hamiltonian, in

which an artificial source field ṽ2′2 couples to ψ̂†(t2, x2′)ψ̂(t2, x2), and write C̃[11′,22′]

as the linear response to the source field ṽ22′ of the single-particle density ma-

trix ρ̃11′ = 〈ψ̂†(t1, x1′)ψ̂(t1, x1)〉H . (2) Decouple the interaction using a Hubbard-

Stratonovitch transformation, thereby introducing a functional integral 〈. . .〉V over

real scalar fields VF/B , the so-called “interaction fields”, defined on the forward

and backward Keldysh contours, respectively; these then constitute a dynamic, dis-

sipative environment with which the electrons interact. (3) Derive an equation of

motion for ρ̃V11′ , the single-particle density matrix for a given, fixed configuration

of the fields VF/B , and linearize it in ṽ2′2, to obtain an equation of motion for the

linear response δρ̃V11′(t) to the source field. (4) Formally integrate this equation of

motion by introducing a path integral
∫
D̃′(R) over the coordinates of the single

degree of freedom associated with the single-particle density matrix δρ̃V11′ . (5) Use

the RPA-approximation to bring the effective action SV that governs the dynamics

of the fields VF/B into a quadratic form. (6) Neglect the effect of the interaction on

the single-particle density matrix wherever it occurs in the exponents occuring un-

der the path integral
∫
D̃′R, i.e., replace ρ̃Vij there by the free single-particle density

matrix

ρ̃0
ij = 〈ψ̂†(xj)ψ̂(xi)〉0 =

∑

λ

ψ∗
λ(xj)ψλ(xi)n0(ξλ) , (A.4)



March 27, 2008 16:20 WSPC/140-IJMPB 03908

Influence Functional and Interacting Electrons in Conductors 745

where thermal averaging is performed using 〈Ô〉0 = Tr[e−βĤ0Ô]/Tr[e−βĤ0 ]. (7) Per-

form the functional integral 〈· · ·〉V (which steps (5) and (6) have rendered Gaussian)

over the fields VF/B ; the environment is thereby integrated out, and its effects on

the dynamics of the single particle are encoded in an influence functional of the

form e−(iS̄R+S̄I). The final result of this strategy is that j22′ · j11′ C̃[11′,22′] can be

written as [cf. (II.49)]

∫
dx2j22′ · j11′ C̃[11′,22′] =

∫
dx0F ,0̄B

ρ̃0
0F 0̄B

F

∫ 1F

0F

B

∫ 1′

B

0̄B

D̃′(R)

× 1

~

[
ĵ(t2F ) − ĵ(t2B )

]
ĵ(t1)e

−[iS̃R+S̃I ](t1,t0)/~ (A.5)

where F

∫
B

∫
˜D′(R) is used as a shorthand for the following forward and backward

path integral between the specified initial and final coordinates and times:

F

∫ iF

jF

B

∫ ı̄B

̄B

D̃′(R) · · · ≡
∫ RF (tFi )=rF

i

RF (tFj )=rF
j

D̃′RF (tF3 )eiS̃
F
0 (tFi ,t

F
j )/~

×
∫ RB(tBi )=rB

ı̄

RB(tBj )=rB
̄

D̃′RB(tB3 )e−iS̃
B
0 (tBi ,t

B
j )/~ · · · (A.6)

The complex weighting functional ei(S̃
F
0 −S̃B

0 ) occuring therein involves the action

for a single, free electron. Expression (A.5) has a simple interpretation: thermal

averaging with ρ̃0
00̄ at time t0 (for which we take the limit → −∞) is followed by

propagation in the presence of interactions (described by e−[iS̃R+S̃I ]) from time t0
up to time t1, with insertions of current vertices ĵ(t2a) at time t2 on either the

upper or lower Keldysh contour, and ĵ(t1) at the final time t1.

For the purpose of calculating the Cooperon propagator, we now make the

following approximation in Eq. (A.5) [referred to as “approximation (ii)” in Ap-

pendix B]: for the first or second terms, for which the current vertex occurs at time

t2ã on contour ã = F or B respectively, we neglect all interaction vertices that occur

on the same contour ã at earlier times t3ã or t4ã ∈ [t0, t2ã ]; however, for the opposite

contour containing no current vertex, we include interaction vertices for all times

∈ [t0, t1], with t0 → −∞. [This turns out to be essential to obtain, after Fourier

transforming, the proper thermal weighting factor [−n′
0(~ε)] occuring in Eq. (1a),

see Appendix C.4.] The rationale for this approximation is that, in diagrammatic

language, this approximation retains only those diagrams for which both current

vertices j22′ and j11′ are always sandwiched between a G̃R- and a G̃A-function;

these are the ones relevant for the Cooperon. The contributions thereby neglected

correspond to the so-called “interaction corrections”. [If one so chooses, the latter

can be kept track of, though.]

This approximation (ii) is much weaker than the one used by GZ at a similar

point in their calculation: to simplify the thermal weighting factor describing the

initial distribution of electrons, namely to obtain the explicit factor ρ0 in Eq. (49)
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of GZ99,3 they set t0 → t2 (their t′ corresponds to our t2), and thereby perform

thermal weighting at time t2, instead of at −∞. As a consequence, in their analysis

all time integrals have t2 as the lower limit, which means that (contrary to their

claims in GZ004) they did not correctly reproduce the Keldysh first order pertur-

bation expansion for C̃[11′,22′], in which all time integrals run to −∞. A detailed

discussion of this matter is given at the end of Appendix C.3. [Contrary to our

initial expectations, but in agreement with those of GZ, it turns out, though, that

the choice of t0 does not have any implications for the calculation of τϕ, which does

not depend on whether one chooses t0 = t2 or sends it to −∞.]

Having made the above approximation (ii), the effective action (iS̃R + S̃I) oc-

curing in Eq. (A.5) is found to have the following form (we use the notation iS̃R/S̃I
to write two equations with similar structure in one line, and upper or lower terms

in curly brackets refer to the first or second case):

[iS̃R/S̃I ](t1, t0) ≡
∑

aa′

∫ t1

t0

dt3

∫ t1

t0

dt4(iL̃
R/L̃I)3a4a′

, (A.7)

(iL̃R/L̃I)3F 4F = −1

2
i θ34δ̃3F 3̄F

{
[δ̃ − 2ρ̃0]4F 4̄F

δ̃4F 4̄F

}
L̃R/K

3̄F 4̄F
, (A.8a)

(iL̃R/L̃I)3B4F =
1

2
i θ34

{
[δ̃ − 2ρ̃0]4F 4̄F

δ̃4F 4̄F

}
L̃R/K

3̄B 4̄F
δ̃3̄B3B

, (A.8b)

(iL̃R/L̃I)3F 4B = ∓1

2
θ34δ̃3F 3̄F

L̃A/K
4̄B 3̄F

{
[δ̃ − 2ρ̃0]4̄B4B

δ̃4̄B4B

}
, (A.8c)

(iL̃R/L̃I)3B4B = ±1

2
i θ34L̃A/K4̄B 3̄B

δ̃3̄B3B

{
[δ̃ − 2ρ̃0]4̄B4B

δ̃4̄B4B

}
. (A.8d)

Here δ̃ı̄i = δσı̄σiδ(rı̄−ri) and (L̃R,A,K)ı̄a ̄a′
= (L̃R,A,K)

(
tia −tja′

, raı̄ (tia )−ra′̄ (tja′
)
)

are the standard retarded, advanced and Keldysh interaction propagators. For each

occurrence in Eqs. (A.8) of a pair of indices, one without bar, one with, e.g. 4a and

4̄a, the corresponding coordinates xa4 and xa4̄ are both associated with the same time

t4, and integrated over,
∫
dxa4dx

a
4̄ , in the path integral

∫
D′(R). (This somewhat

unusual aspect of the “coordinates-only” path integral used in our approach is

discussed in explicit detail in Appendix D.4; it is needed to account for the fact that

the density-matrix ρ̃0 is non-local in space, and arises upon explicitly performing

the
∫
DP momentum path integral in GZ’s formulation.) The δ̃ı̄i functions on the

right hand side of Eqs. (A.8) will kill one of these double coordinate integrations

at time ti.

Equations (A.7) and (A.8) are the main result of our rederivation of the influence

functional approach. They are identical in structure (including signs and prefactors)
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to the corresponding expressions derived by GZ (Eqs. (68) and (69) of GZ993), as

can be verified by using the relations

−e2R̃ij = L̃Rij = L̃Aji , e2Ĩij = e2Ĩji = −1

2
iL̃Kij , (A.9)

to relate our interaction propagators L̃ij to the functions Rij and Iij used by GZ.

However, whereas Eqs. (68) and (69) of GZ993 are written in a mixed coordinate-

momentum representation in which it is difficult to treat the Pauli factors (δ̃ − 2ρ̃0)

sufficiently accurately, our expressions (A.8) are formulated in a coordinates-only

version. Formally, the two representations are fully equivalent. The key advantage of

the latter, though, is that passing to a coordinate-frequency representation (which

can be done before disorder averaging, allows us to sort out the fate of (δ̃ − 2ρ̃0),

as discussed in Sec. A.3 [and extensively in Appendix B.6.2].

A.2. Cooperon self energy before disorder averaging

From the formalism outlined above, it is possible to recover the standard results of

diagrammatic Keldysh perturbation theory, before disorder averaging, by expanding

the path integral (A.5) in powers of the effective action 1/~(iS̃R+ S̃I). For example,

using Eqs. (A.8) [and being sufficiently careful with signs, see Appendix B.6.1]

one readily obtains the following expressions for Cooperon self energy Σ̃R/I =∑
aa′ Σ̃

R/I
aa′ , summarized diagrammatically in Fig. A.1:

(
Σ̃
R/I
FF

)3F 4̄F

4̄B3B

= − i~
2

(G̃K/R)3F 4̄F G̃A4̄B3B
(L̃R/L̃K)3F 4̄F , (A.10a)

(
Σ̃
R/I
BF

)3F 4̄F

4̄B3B

= − i~
2

(G̃K/R)3F 4̄F G̃A4̄B3B

(
L̃R
/

1

2
L̃K
)

3B

4̄F , (A.10b)

(
Σ̃
R/I
FB

)3F 4̄F

4̄B3B

= − i~
2
G̃R,3F 4̄F (G̃K/A)4̄B3B

(
L̃A
/

1

2
L̃K
)

4̄B

3F , (A.10c)

(
Σ̃
R/I
BB

)3F 4̄F

4̄B3B

= − i~
2
G̃R,3F 4̄F (G̃K/A)4̄B3B

(L̃A/L̃K)4̄B3B
. (A.10d)

To obtain this, we exploited the fact that every vertex occuring in the effective ac-

tion is sandwiched between retarded propagators if it sits on the upper contour, and

advanced ones on the lower contour. The Keldysh functions arise from using some

exact identities, valid (before impurity averaging) in the coordinate-time represen-

tation: depending on whether a vertex at time t4′

a
sits on the forward (time-ordered)

or backward (anti-time-ordered) contour (a′ = F/B), the factor (δ̃ − 2ρ̃0)L̃R/A oc-

curing in L̃Raa′ is sandwiched as follows (on the left hand sides below, a coordinate

integration
∫
dx4a′

over the un-barred variable at vertex 4 is implied):

[G̃RiF 4F
(δ̃ − 2ρ̃0)4F 4̄F

]L̃R34̄F
G̃R4̄F jF

→ G̃KiF 4̄F
(ε̄− ω̄)L̃R34̄F

(ω̄)G̃R4̄F jF
(ε̄) , (A.11a)

G̃A̄B 4̄B
L̃A4̄B3[(δ̃ − 2ρ̃0)4̄B4B

G̃A4B ı̄B ] → −G̃A̄B 4̄B
(ε̄)L̃A4̄B3(ω̄)G̃K4̄B ı̄B

(ε̄− ω̄) . (A.11b)
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BF Σ∼I

FB Σ∼I
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Σ∼I

(Σ )I∼ F3
F4

B4 B3

F3
F4

1’B

F4

3B
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B4 2B

1F
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+ +R A

KK

K

A

+ +

Fig. A.1. First order contributions to the irreducible self energy of the Cooperon, illustrating
Eqs. (A.10). The arrows associated with each factor G̃ij or L̃ij in Eqs. (A.10) are drawn to point
from the second index to the first (j to i). Filled double dots denote the occurence of a factor
(δ̃ − 2ρ̃)4F 4̄F

on the upper contour or (δ̃ − 2ρ̃)4̄B4B
on the lower contour. Bars on filled dots are

used to indicate the barred indices to which the interaction lines depicting L̃ı̄̄ are connected. Both
filled and open single dots indicate a delta function δ̃; the open dots stand for delta functions that
have been inserted to exhaust dummy integrations, as discussed after Eqs. (A.8) [and, in more
detail, in Sec. 6.1]. The diagrams in (b) and (c) coincide precisely with those obtained by standard
Keldysh diagrammatic perturbation theory for the Cooperon self energy, as depicted, e.g.,, in Fig. 2
of Ref. 20. (There, impurity lines needed for impurity averaging are also depicted; in the present
figure, impurity averaging has not yet been performed.)

The left- and right-hand sides are written in the time and frequency domains,

respectively. To obtain Keldysh functions from the left-hand side expressions, we

exploit the fact that the upper or lower contours are time- or anti-time-ordered to

add an extra −G̃A/R = 0, and then exploited Eq. (5a) to obtain a factor ±G̃K (see

Sec. B.6.2).

A.3. Thermal averaging

It remains to figure out how the thermal weighting in Eq. (1a) can be derived from

our general path integral expression Eq. (A.5). This is a standard, if nontrivial, ex-

ercise in Fourier transformation, carried out (along the lines of a similar analysis by

AAK10) in Appendix C.4. The result is an equation for the conductivity similar to

but more general than Eq. (1), with
∫∞

0
dτP̃ 12′,ε

21′ ,eff(τ) replaced by
∫∞

0
dτ12P̃

12′,ε
21′ (τ12),
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involving a slightly more complicated path integral [Eq. (C.21)], defined as

P̃ 12′,ε
21′ (τ) =

∫ ∞

−∞

dτ̄ eiτ̄εF

∫ RF ( τ
2
)=r1

RF (− τ
2
− τ̄

2
)=r2′

B

∫ RB( τ
2
)=r1′

RB(− τ
2
+ τ̄

2
)=r2

D̃′(R)e−[iS̃R+S̃I ]/~ .

(A.12)

Note that the duration of the forward and backward paths differs by a time τ̄ , in

contrast to the path integral (1b) used in the main text. The combination
∫
dε
∫
dτ̄

of integrals from Eqs. (1a) and (A.12) have the effect of fixing24 the average energy

of the forward and backward trajectories to be close to the Fermi energy, with energy

spread of roughly ±T (see Appendix C.4 for a detailed discussion). This energy ε

is the same as the one that in perturbative calculations shows up in the tanh[~(ε−
ω̄)/2T ]-factors of the Keldysh electron Green’s functions G̃K(ε− ω̄), which play a

role in determining the phase space available for electrons to get scattered upon

absorbing or emitting a noise quantum. In Appendix C.4 we argue that the simplest

way to keep track of this in the influence functional approach is to replace Eq. (A.12)

by Eq. (1b), which mimics the effect of the former’s integral
∫
dτ̄eiετ̄ by using

(i) forward and backward paths of equal duration τ and (ii) an effective action

whose time integration boundaries are fixed at ±τ/2, but which depends explicitly

on the average propagation energy ε [via Eqs. (2), (4e), or equivalently Eqs. (B.93),

(B.96)].

Note that GZ’s approach in effect employs the same simplification, since they

likewise have no
∫
dτ̄eiετ̄ integral and use forward and backward paths of equal

duration τ . Their effective action depends on the average energy ε, too, via

the tanh[~ε/2T ]-factor in their S̃R. However, lacking the −ω̄ recoil shift, their

tanh-terms turn out to yield zero after averaging over random walks, so that

〈iS̃GZ
R 〉rw ' 0.

A.4. Perturbative versus nonperturbative methods

We conclude this overview-style appendix with some general comments on whether

it is sufficient to calculate τϕ perturbatively, as we contend (in agreement with

others18–21), or whether a truly nonperturbative approach is needed, as GZ have

argued in GZ00.4 We have made an effort to keep the discussion as nontechnical

as possible and accessible to casual readers that have not studied Appendix B in

detail, although we will on occasion refer to results from the latter.

In GZ’s influence functional approach, the decoherence time is defined as the

scale at which the function F (τ) = 1/~〈iS̃R + S̃I〉rw, which in their theory is linear

in the interaction propagators R̃/Ĩ, becomes of order one. This means that τϕ is

the crossover scale between the regimes where perturbation theory is rigorously

valid or breaks down, F (τ) � 1 or � 1, respectively. To determine this scale,

we contend that it is sufficient to calculate F (τ) perturbatively (assuming, strictly

speaking, F (τ) � 1), and then to enquire for what time the perturbative result

so obtained ceases to be small, setting F (τϕ) ' 1. (This is analogous to the fact
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that the crossover scales TK or Tc, the Kondo temperature in the Kondo problem

or the critical temperature in the theory of superconductivity, can be calculated

perturbatively as the scales where perturbation theory breaks down.) An accurate

knowledge of F (τ) for τ & τϕ would be needed only if we desired to accurately

include exponentially small (e−F (τ) � 1) contributions to weak localization, which

is usually deemed not worth the effort. (In contrast, for the Kondo problem or

superconductivity, nonperturbative treatments are worth the effort, because the

phenomena of interest become strong in the nonperturbative regimes.)

GZ have argued in GZ004 that a perturbative treatment of weak localiza-

tion is insufficient, because according to them, it fails to disentangle the effects

of preexponent and exponent in an Ansatz for the Cooperon of the general form

C(τ) = A(τ)e−F (τ): when this is expanded in powers of the interaction, both A and

F contribute to the first-order term C(1). The influence functional approach avoids

this problem by very naturally generating a general expression for the function F

in the exponent – which in GZ’s approach turns out to be linear in the interaction

propagator [Eq. (2), or Eq. (B.83)]. However, the problem of disentangling the ex-

ponent from the preexponent is easily avoided in the diagrammatic approach, too,

by calculating not the Cooperon itself, but its self energy, to linear order in the in-

teraction; Fourier transforming the resulting Cooperon C(ω) into the time domain,

this automatically yields an expression of the form A(τ)e−F (τ), again with F linear

in the interaction propagator. [The prefactor arises from wave-function renormal-

ization effects, see DMSA-II,22,23 Eq. (14a).] Since both the influence functional

and diagrammatic strategies yield results for which the exponent F is linear in the

interaction (and contains contributions with a similar coth+ tanh structure), it is

reasonable to expect that if both approaches are implemented with sufficient care,

their answers for F should agree completely.

They do agree, in fact, if the recoil-incorporating effective action proposed in this

work and featuring tanh[~(ε ∓ ω̄)/2T ]-factors is used. (This agreement is demon-

strated explicitly in DMSA-II.22,23) But they differ if GZ’s procedure is followed

without modification, leading to their no-recoil tanh[~ε/2T ]-factors. It is impor-

tant and instructive, therefore, to identify at which point of the derivation of the

influence functional approach the need for a modification of GZ’s approach first

manifests itself. We shall now argue that this point is reached when the order in

which two distinct averaging procedures are performed, over paths Ra and fields

V , is tacitly interchanged, an aspect that has not been emphasized in the preceding

sections.

To be concrete, let us focus on an intermediate stage of GZ’s first principles

calculation of the weak localization contribution σWL
DC to the conducitivity. Following

the enumeration of steps used in Appendix A.1, p. 744, this stage is reached after

steps (1) to (6) [or according to the enumeration of Appendix B.4, p. 762, after steps

(A) to (G)], resulting in the following expressions [the first of which corresponds
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to Eq. (B.54a)]:

σDC,real =
∑

σ1

1

d

∫
dx2j11′ · j 22′ J̃ ′

12′,21′(0) , (A.13a)

J̃ ′
12′,21′(0) = J̃ ′ free

12′,21′(0)〈〈ei(S̃F
V −S̃B

V )/~〉cqp〉V , (A.13b)

tS̃
F/B
V =

∫ τ
2

− τ
2
∓ τ̄

2

dt3h̃
F/B
V (t3,R

F/B(t3)) , (A.13c)

〈· · ·〉cqp = [J̃ ′ free
12′,21′(0)]−1

∫
(dε)[−n′(~ε)]

∫ ∞

−∞

dτ̄ eiτ̄εF

∫ RF ( τ
2
)=r1

RF (− τ
2
− τ̄

2
)=r2′

×B

∫ RB( τ
2
)=r1′

RB(− τ
2
+ τ̄

2
)=r2

D̃′(R)ei[S̃
F
0 ( τ

2
,− τ

2
− τ̄

2
)−S̃B

0 ( τ
2
,− τ

2
+ τ̄

2
)]/~ · · · (A.13d)

The correlator J̃ ′
12′,21′(0) originates from C̃[11′,22′] of Eq. (A.3c). It has here been

expressed [starting from Eqs. (B.49) to (B.51), and using the results of Eqs. (C.14),

(C.19a) and (C.21)] as a double average 〈〈· · ·〉cqp〉V over a pair of phase factors

ei(S̃
F
V −S̃B

V ), which describe the influence of interactions, represented by fluctuating

fields VF/B(t3, r3), on a pair of closed quantum-mechanical paths (cqp). [The de-

tailed form (A.13c) of the phase factors follow from Eq. (B.55), with h̃aV given by

(B.36b); see also Eq. (B.57), and the discussion thereafter]. Eq. (A.13b) instructs us

to first pick out a specific configuration of the fields VF/B(t3, r3), then to calculate

the average 〈· · ·〉cqp of this phase factor over all closed quantum-mechanical paths

with boundary conditions specified in Eq. (A.13d) [as obtained from Eq. (C.21)],

and to evaluate the average over all field configurations in the end. Thus, for a given

V , the set of paths making the dominant contribution will depend on V .

Now, the next step of GZ’s strategy [step (7) according to Appendix A.1, or

step (H) according to Appendix B.4], is to perform the average 〈· · ·〉V over the

interaction fields. To carry out this step, GZ (tacitly) interchange the order of

averages [as do we in Appendix B.5.5], in effect replacing Eq. (A.13b) by

J̃ ′
12′,21′(0) = 〈〈ei(S̃F

V −S̃B
V )/~〉V 〉cqp

RPA' 〈e−S̃eff/~〉cqp , (A.14a)

S̃eff [Ra] =
1

2~
〈(S̃FV − S̃BV )(S̃FV − S̃BV )〉V = iS̃R + S̃I . (A.14b)

Equation (A.14a) instructs us to first pick out a specific pair of paths RF/B(t3),

and then to calculate the influence functional 〈ei(S̃F
V −S̃B

V )/~〉V which describes how

the chosen pair of paths are effected on average by interactions. Within the RPA

approximation, the 〈· · ·〉V average can now be done exactly, yielding an effective

action S̃eff that is linear in interaction correlators R̃/Ĩ [Eq. (B.83)]. The sum over

all closed quantum paths is to be performed at the end.
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Now, this seemingly innocuous change in the order of averages is without con-

sequence only if both averages are performed exactly, as is possible in an order-for-

order perturbation expansion (or, to all orders, for exactly solvable models such as

the Caldeira-Leggett model). However, this is not the case in GZ’s theory (or our

version thereof), which proceeds to use the semiclassical approximation of replacing

the sum over all closed quantum paths by a sum over only the saddle point paths

that extremize the action. In principle, this can be done in at least two different

ways, which we indicate schematically as follows:

〈e− 1
~
S̃eff [r

a]〉cqp
GZ−−−−→ 〈e− 1

~
S̃GZ

eff [ra
bare]〉bare ' e−

1
~
〈S̃GZ

eff [ra
bare]〉bare , (A.15a)

〈e− 1
~
S̃eff [r

a]〉cqp
ideally−−−−→ 〈e− 1

~
S̃eff [r

a
dressed]〉dressed . (A.15b)

Here the subscripts bare/dressed indicate that the sums over the paths on the right

side of Eq. (A.15) are taken only over those paths, with boundary conditions as

specified in Eq. (A.13d), which extremize the bare action S̃0 = S̃F0 − S̃B0 (“bare”

paths, Eq. (A.15a), used by GZ), or the full action S̃tot = S̃0 + iS̃eff (“dressed”

paths, Eq. (A.15b), discussed below). On the far right of Eq. (A.15a), we indi-

cated a further (uncontroversial) approximation, used by GZ and others when an

exponential is to be averaged over bare paths, namely to lift the average into the

exponent. In practice, [e.g., Sec. 4], the averages 〈· · ·〉bare on the right-hand-side of

Eq. (A.15a) are replaced by 〈〈· · ·〉bare〉dis → 〈· · ·〉rw, where the latter average is over

diffusive random walks (rw) with appropriate boundary conditions. In other words,

〈· · ·〉bare is approximated by considering only semiclassical trajectories in a disor-

dered potential landscape (while fluctuations about these semiclassical paths are

neglected), and, after implicit disorder averaging, these semiclassical trajectories

are treated as random walks.

Ideally, one would of course prefer to average over dressed paths [Eq. (A.15b)],

which “know” about the effects of interactions due to the role that iS̃eff plays in de-

termining the saddle point trajectories. (Even more ideally, one would also take into

account fluctuations about these dressed paths). In such a calculation, the iS̃I term

in iS̃eff would cause the dressed paths R̃
a

dressed to acquire an imaginary component

(we thank Igor Gornyi for alerting us to this fact), implying that the contributions

of the two terms in (iS̃R + S̃I)[R
a
dressed] can partially cancel, even though both S̃R

and S̃I are purely real functionals of their arguments (GZ overlooked the possibility

of such a partial cancellation, because they considered only bare paths, see below.

Marquardt17 has illustrated how such a partial cancellation occurs in the Caldeira-

Leggett model). Note that such a dressed-path procedure would require only that

S̃tot[R
a
dressed]/~ � 1, and would not require S̃eff [Ra

dressed]/~ to be small. Indeed,

its results would be nonperturbative in the interaction correlator R̃/Ĩ , since S̃eff ,

though linear in R̃/Ĩ, is a non-linear functional of Ra
dressed, which itself is nonlin-

ear in R̃/Ĩ (as illustrated explicitly in the Caldeira-Leggett model, where all these

nonlinear functions can be evaluated explicitly).
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However, in the present theory, using fully dressed paths is not technically fea-

sible. Therefore, GZ made the standard and seemingly natural choice of averaging

purely over bare paths. Indeed, they write (just before Eq. (61) of GZ993): “In

the zero-order approximation, one can neglect the terms S̃R and S̃I describing the

effect of Coulomb interaction” so that “the path integral is dominated by the saddle-

point trajectories for the action S̃0”. In other words, bare paths don’t “know” about

the interactions at all. Consequently, GZ used an effective action S̃GZ
eff obtained by

treating the Pauli factor δ̃−2ρ̃ in S̃eff as time-independent (arguing that the energy

argument of the corresponding Fermi function is conserved during propagation), es-

sentially replacing it by tanh[~ε/2T ]. [See p. 9205 of GZ993: “n depends only on the

energy and not on time because the energy is conserved along the classical path”.]

Once the approximation of using purely bare paths has been made, the ef-

fective action S̃GZ
eff [Ra

bare] is linear in the interaction propagators (since Ra
bare is

now independent of the interaction). This implies in our view that GZ’s results

are purely perturbative. GZ dispute this characterization, calling their approach

“nonperturbative” because in their view it does not require S̃GZ
eff [Ra

bare] . ~, only

S̃GZ
eff [Ra

bare] � S̃0[R
a
bare]. We disagree, contending that GZ do need the former con-

dition, because without it, their use of purely bare paths would not be be justified:

a semiclassical treatment requires the evaluation of the action S̃tot[R
a] to be ac-

curate to within ~, implying that the effects of S̃eff on the semiclassical paths can

be neglected only if S̃GZ
eff [Ra

bare] . ~. [Note, also, that an approach that reliably

evaluates 〈S̃eff〉 in the regime where the result is . ~ would yield the function F (τ)

in the regime where it is . 1, which is entirely sufficient to reliably extract τϕ, as

argued in the second paragraph of this subsection.]

While it is a matter of somewhat empty semantics whether an approach using

purely bare paths can be called nonperturbative or not, the validity of such an

approach can be subjected to a hard test: does the result which this approach

produces for F (τ) after the average 〈· · ·〉bare has been performed agree, in the regime

F (τ) � 1, with that obtained from Keldysh perturbation theory? (GZ’s claim in

GZ004 that their approach agrees with Keldysh perturbation theory, is true only if

the perturbation expansion is performed before averaging over paths, see Secs. B.6.1

and C.3). The answer is no; The perturbation expansion obtained by expanding the

first-principles expression (A.13) in powers of (S̃FV − S̃BV )/~ shows unambiguously

that the paths arising in the perturbation expansion, do know about the interactions

(in contrast to bare paths): energy conservation induces recoil at each interaction

vertex, so that the electron frequencies incident and leaving a vertex differ from

each other, ε̄ versus ε̄ ∓ ω̄, in a way relevant for the Pauli factors, which depend

on ε̄ ∓ ω̄. This effect is negligible for retarded and advanced electron propagators,

which depend only on the combination ~(ε̄ ∓ ω̄) − ξp ± i~/τel, with ξp = P 2/2m

[Eq. (F.2)], since in this combination energy shifts by ~|ω̄| . ~/τel are negligible.

However, it is not negligible for the Keldysh propagator, which contains fermion

functions of the form [e[~(ε̄∓ω̄)−εF ]/T + 1]−1 [Eq. (B.47b)], in which the largeness

of ~ε̄ is cancelled by that of εF . Thus, interaction events with recoil energies of
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order ~|ω̄| & T strongly change the value of the Fermi function which specifies the

phase space available for a given transition. Since these recoil effects are present in

the original order 〈〈· · ·〉cqp〉V of doing the average but absent in the switched order

〈e−S̃GZ
eff /~〉bare if GZ’s version of the effective action is used, something is clearly

amiss in the latter approach.

The main assertion of our own work is that for the purpose of describing deco-

herence in weak localization, recoil effects can be taken into account in the influence

functional approach provided GZ’s use of bare paths is supplemented by the use of

an effective action that keeps track of recoil (rec):

〈e− 1
~
S̃eff [r

a]〉cqp
JvD−−−−→ 〈e− 1

~
S̃rec

eff [ra
bare ]〉bare ' e−

1
~
〈S̃rec

eff [ra
bare ]〉bare . (A.16)

[In practice, we perform the averages over bare paths on the r.h.s. the same way

as GZ do,3,4 i.e., using an average over semiclassical diffusive random walks (and

neglecting fluctuations about these), 〈〈· · ·〉bare〉dis → 〈· · ·〉rw.] Here S̃rec
eff is the ef-

fective action obtained by representing (δ̃ − 2ρ̃) by tanh[~(ε ∓ ω̄)/2T ]-factors [as

made explicit in Eq. (B.95)]. The result for S̃rec
eff [Ra

bare] so obtained [Eq. (2), or

Eq. (B.93) with (B.96)] is linear in the interaction propagators R̃/Ĩ, just as GZ’s

effective action is, but in contrast to the latter, an expansion of e−
1
~
〈S̃rec

eff 〉bare to

first order in the exponent yields results consistent with the Keldysh perturbation

expansion also if the average over paths in (1/~)〈S̃rec
eff 〉bare is performed explicitly

first and the exponential expanded only thereafter. Moreover, the results for F (τ)

so obtained agree fully with those from a diagrammatic Bethe-Salpeter calcula-

tion of the Cooperon (see DMSA-II22,23). A crucial ingredient for ensuring this

agreement is that the ultraviolet divergencies arising in each of the two terms in

〈(iS̃rec
R + S̃rec

I )[Ra
bare]〉bare cancel each other [Sec. 4]. This cancellation is possible

because the functional S̃rec
R [Ra

bare], despite using only bare paths, is not purely

real, thereby capturing an essential feature of S̃eff [Ra
dressed] that is not present in

S̃GZ
eff [Ra

bare].

Since GZ contend that their approach is nonperturbative, they reject arguments

based on perturbation theory, defending their use of purely bare paths by evoking

only the standard semiclassical approximation. But the need to keep track of recoil

arises within the latter framework, too, in a way very similar to that described

above: the standard condition for the validity of the semiclassical approximation is

that the propagation energies and momenta of the quantum particle that is to be

described semiclassically should be much larger than the typical frequencies and

wave numbers characterizing the potential landscape which it is moving in, so that

the latter appears “smooth”. If one were to consider a single noninteracting electron

propagating with energy ~ε̄ ' εF through a disordered potential landscape, this

implies the conditions εF � ~/τel (or kF � 1/lel), which certainly are satisfied in

the regime of weak localization. However, GZ’s theory for an electron propagating

through and interacting with a Fermi sea of other electrons shows that the propa-

gation energy enters not only in the free part of the action, but also in the Fermi

function [e(~ε̄−εF )/T +1]−1 arising from the Pauli factor δ̃−2ρ̃ in S̃R. To ensure that
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this factor is treated accurately, the standard semiclassical condition εF � ~/τel
evoked by GZ is not sufficient, since inside the Fermi function the largeness of ~ε̄

is cancelled by the largeness of εF . Thus, interaction-induced changes in ε̄ of order

ω̄ . 1/τel will produce strong changes in the Fermi function between ' 0 and ' 1.

These changes need to be kept track of. As argued above, this can be accomplished

by the recoil contributions ∓ω̄ in our tanh[~(ε∓ ω̄)/2T ]-factors.

Appendix B. Derivation of Influence Functional Approach

In this appendix, we rederive the influence functional approach of GZ, with the

aim of establishing clearly (i) how far it can be taken without any approximations,

and (ii) what the consequences are of the approximations that they eventually do

make. We generally follow the strategy they have chosen to use, but the details of

our notations and derivations deviate from GZ’s whenever we believe that greater

compactness, clarity or generality can thereby be achieved. The most important

difference is that instead of using the coordinate-momentum path integral
∫
D(RP )

of GZ, we use a coordinate-only version
∫
D′R, since this enables the Pauli factor

to be treated more accurately.

The outline of this appendix is as follows. After a summary of our notational

conventions, Secs. B.1 to B.3 define the model and decouple the interaction using a

Hubbard-Stratonovich transformation within a Keldysh framework. In Sec. B.4, we

summarize GZ’s procedure for deriving their influence functional approach, and in

Sec. B.5 repeat their steps in explicit detail, although with some changes. Finally,

Sec. B.6 establishes a link between the influence functional so derived and Keldysh

perturbation theory, and discusses the fate of the Pauli factor.

Notational conventions

We begin by summarizing, for ease of reference, some notational conventions to

be used throughout: we shall use the shorthands x ≡ (r, σ) for electron posi-

tion and spin, and
∫
dx ≡ ∑

σ

∫
dr. Operators will generally carry hats (e.g.,

Ĥ0), and the subscripts S, H and I will distinguish operators in the Schrödinger,

Heisenberg or interaction pictures, respectively. For c-number fields, the shorthand

Vi ≡ Vi(ti) ≡ V (ti, ri) will often be used, i.e., the time argument, when not dis-

played explicitly, will be understood to be ti. c-number functions depending on two

different coordinates, i.e., coordinate-space matrices, will generally carry tildes [e.g.,

ρ̃ij = ρ(xi, xj)], and their Fourier transforms w.r.t. ri − rj will carry bars, e.g.,

ρ̄(Rij ,p) ≡
∫
drije

−ip·rij ρ̃

(
Rij +

1

2
rij ,Rij −

1

2
rij

)
, (B.1)

where Rij and rij will generally denote center-of-mass and relative coordinates,

Rij = (ri + rj)/2 , rij = ri − rj . (B.2)

We do not set ~ = 1, but display it explicitly throughout. Hence, the variable p in

Eq. (B.1) (and likewise k, q below) denotes a wave-number, with units of inverse
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length, not a momentum; the corresponding momenta will always be denoted by

capital letters:

P = ~p , K = ~k, Q = ~q . (B.3)

For correlation functions, the shorthand G̃ij ≡ G̃ij(tij) ≡ G(tij ;xi, xj) will often

be used, i.e., the time argument, when not displayed explicitly, will be understood

to be tij = ti − tj . [For the step function, we use θij ≡ θ(tij).] The corresponding

frequency Fourier transform w.r.t. tij will be denoted by

G̃ij(tij) =

∫
(dω)e−iωtij G̃ij(ω) ,

∫
(dω) ≡

∫
dω

2π
, (B.4)

where ω has units of inverse time. If coordinate-space subscripts are not dis-

played explicitly, they are understood to be summed over, e.g., [G̃(t)G̃(t′)]ij ≡∫
dxkG̃ik(t)G̃kj(t

′). We distinguish forward and backward parts of the Keldysh

contour by an index a = F,B [GZ use a = 1, 2 instead], and use boldface for

matrices in Keldysh space, e.g., G̃ij .

A pair of indices such as ii′, appearing once without prime and once with, will

denote independent coordinates xi and xi′ referring to the same time (i.e., ti = ti′

is to be understood), which are, however, to be set equal at the very end of the

calculation, after being differentiated upon, i.e.,

(∇i − ∇i′)ρ̃ii′ ≡ [(∇i − ∇i′)ρ̃ii′ ]xi=xi′
. (B.5)

We shall often encounter double summations over coordinates referring to the same

time. For such coordinates we shall use the index pair iı̄, one without bar and one

with, take it to be understood that tı̄ ≡ ti, and denote the double summation by
∫
dxi,̄ı ≡

∑

σi

∫
dridrı̄ . (B.6)

When taking the limit of infinite volume, we shall use the shorthand notation
∫

(dp) ≡
∫

dp

(2π)d
= lim

Vol→∞

1

Vol

∑

p

, (B.7a)

δ̄(d)(p− p) ≡ lim
Vol→∞

δp,p′Vol , (B.7b)

so that
∫
(dp)δ̄(p) = 1, i.e., δ̄(p) equals (2π)d times a d-dimensional Dirac delta

function. If the integrand under
∫
(dp) depends only on the energy ξp = P 2/2m−εF

and if it decays at least as fast as 1/ξ2p for ξp → ∞, we shall use
∫
(dp) → ν

∫
dξp.

Here ν denotes the density of states per spin at the Fermi surface, which in d = 3

or 2 dimensions is given by

ν =
m

2π~2

(
kF

π

)d−2

=
d〈n〉
2εF

, (B.8)

where 〈n〉 =
∫
k<kF

(dk) = (π/2d)(kF/π)d is the average electron density per spin.

The purely 1-dimensional case d = 1 will not be considered here; nevertheless, d = 3
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or 2 of course include the case that a sample is quasi 1-dimensional, in the sense

that only one of its dimensions is larger than the phasebreaking length, L &
√
Dτϕ,

where D = v2
Fτel/d is the diffusion constant.

For quasi-d̄-dimensional diffusion, the actually measured (bare) DC conductivity

σd̄ is related to the Drude conductivity σDrude
DC = 2e2νD by an extra factor ad−d̄,

which accounts for the sample’s transverse directions along which motion is not

diffusive (d = 3 or 2 is the actual dimension of the sample, d̄ = 3, 2 or 1 the effective

dimension for diffusive motion). Hence, it is customary to define [cf. AAK,10 after

Eq. (5)] σd̄ = σDrude
DC ad−d̄ as the conductivity per unit length and unit area of

a 3D sample (for d̄ = 3), or the inverse square resistance of a film (for d̄ = 2),

or the inverse resistance per unit length of a wire (for d̄ = 1). Likewise, the weak

localization correction to the conductivity is often expressed in terms of these actual

conductivities by defining σWL
d̄

≡ σWL
DC a

d−d̄.

The fact that the weak localization correction is small compared to the Drude

term is often made explicit by writing the prefactor of the Cooperon term as

σDrude
DC /gd̄(LH) [see Eq. (C.9)], where LH =

√
DτH is the magnetic length and

gd̄(L) ≡ (~/e2)σd̄L
d̄−2 , (B.9)

is the so-called dimensionless conductance, defined as the conductance, in units of

e2/~, of a rectangular (d-dimensional) block with volume ad−d̄Ld̄, measured along

one of the “long” directions (of length L).

For good conductors, gd̄(L) = (π1−d/d)(akF)d−d̄(lelkF)d̄−1(L/lel)
d̄−2 is large

whenever L is large: we may assume lelkF � 1 and akF � 1 throughout, thus

for d̄ = 3 or 2, any length L ≥ lel implies gd̄(L) � 1; for d̄ = 1 the function

g1(L) likewise starts out being � 1 for L ' lel, but decreases with increasing L;

nevertheless, it reaches g1(L∗) = 1 only when L exceeds the very large length scale

L∗ = (akF)d−1lel � lel.

B.1. The model and Kubo formula

Following GZ, we consider a disordered system of interacting fermions, described

by the Hamiltonian Ĥ = Ĥ0 + Ĥi, where

Ĥ0 =

∫
dxψ̂†

S(x)h0(x)ψ̂S(x) , h0(x) =
−~

2

2m
∇

2
r + Vimp(r) − µ , (B.10)

Ĥi =
e2

2

∫
dx1dx2 : n̂11S : Ṽ int

12 : n̂22S : , (B.11)

: n̂ijS := n̂ijS − 〈n̂ijS〉0 , n̂ijS ≡ ψ̂†
S(xj)ψ̂S(xi) , (B.12)

〈Ô〉0 = Tr{Ôρ̂0} , ρ̂0 = e−βĤ0{Tr e−βĤ0} . (B.13)

Vimp(r) is the disorder potential. We shall assume that the interaction potential

Ṽ int
12 = Ṽ int(|r1 − r2|), which guarantees that its Fourier transform in d̄ effective
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dimensions, V̄ int
d̄

(q) = V̄ int
d̄

(|q|) = a3−d
∫
ddre−iq̄·rṼ int(r), is real. For example, for

the Coulomb interaction, they are given by Ṽ int
12 = 1/(|r1 − r2|), and

V
(3)
q̄ =

4π

q̄2 , V
(2)
q̄ =

a2π

|q̄| , V
(1)
q̄ = a2 ln(q̄2a2) . (B.14)

Equation (B.12) corresponds to a normal-ordering prescription which subtracts the

expectation value w.r.t. the free density matrix ρ̂0. The second-quantized electron

field ψ̂S(x) ≡ ψ̂S(r, σ) (in the Schrödinger picture) destroys a spin-σ electron at

position r, and can be expanded as follows in terms of the exact eigenfunctions

ψλ(x) of h0(x), with eigenvalues ξλ:

ψ̂S(x) =
∑

λ

ψλ(x)ĉλS , [h0(x) − ξλ]ψλ(x) = 0 . (B.15)

The current density operator has the form

Ĵ S(t1, r1) =
∑

σ1

[
j11′ − e2

m
A(t1, r1)

]
n̂11′S , (B.16)

where A is the vector potential, j11′ ≡ (−ie~/2m)(∇1 −∇1′), and the convention

of Eq. (B.5) was used for the indices 11′. An external electric field, E(t2, r) =

−∇Vext(t2, r)−∂t2A(t2, r), switched on at time t′0, is described by the perturbationc

Ĥext(t2) = θ(t2 − t′0)

∫
dx2ĥ

ext
S (t2, x2) , (B.17a)

ĥext
S (t2, x2) = hext

22′ n̂22′S , hext
22′ ≡ eVext(t2, r2) −A(t2, r2) · j22′ . (B.17b)

According to the Kubo formula, the linear response of the current density to this

perturbation is

〈δĴH(t1, r1)〉 =
∑

σ1

[
−e

2

m
A(t1, r1)〈n̂11S〉 − i

∫ t1

t′0

dt2

∫
dx2h

ext
22′j11′ C̃[11′,22′]

]
.

(B.18)

The first term of Eq. (B.18) is the diamagnetic contribution, 〈n〉 = 2νεF/d being the

average electron density per spin [cf. Eq. (B.8)]. In the second term, the correlator

C̃[11′,22′] ≡
1

~
〈[n̂11′H , n̂22′H ]〉 (B.19)

is to be evaluated with Ĥext set to zero, where B̂H(t) = eiĤt/~B̂Se
−iĤt/~ describes

time evolution in the Heisenberg picture, and thermal averaging is defined by 〈Ô〉 =

Tr{Ôρ̂H}, where ρ̂H = e−βĤ/{Tr e−βĤ} is the full equilibrium density matrix.

c We use e < 0 for the electron charge, as do AAG,18,19 whereas GZ use −e < 0, hence our
potentials are related to GZ’s by a minus sign: eV here

ext = −eV GZ
x , and likewise eV here

F = −eV GZ
1 ,

eV here
B = −eV GZ

2 for the potentials introduced in Eq. (B.28d) below.
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The DC conductivity is defined via the low-frequency limit of the current re-

sponse to a spatially homogeneous applied AC field E(t2) =
∫

(dω̃0)e
−iω̃0t2E(ω̃0).

For a d-dimensional isotropic sample, it can be written as

σDC = lim
ω0→0

1

d

∂

∂E(ω0)
· 〈δĴ (ω0)〉 , (B.20)

where E(ω0) can be represented by either of the choices (related by a gauge trans-

formation)

A = 0 , Vext(ω0, r2) = −r2 ·E(ω0) , (B.21a)

A(ω0) =
E(ω0)

iω0
, Vext = 0 . (B.21b)

GZ use choice (B.21a) (but note our footnote c), AAG use choice (B.21b). Taking

the limit t′0 → −∞, one then readily finds from Eqs. (B.20) and (B.18) that σDC

can be written in either of the following forms, depending on whether the electric

field is represented using a scalar or a vector potential:

σDC = − e
d

∑

σ1

∫
dx2j11′ · r2 lim

ω0→0
J̃12′,21′(ω0) , (B.22a)

σDC = lim
ω0→0

1

ω0

∑

σ1

[
1

d

∫
dx2j11′ · j 22′ J̃12′,21′(ω0) +

ie2〈n̂11H 〉
m

]
, (B.22b)

where we have introduced the retarded correlator [with θ12 ≡ θ(t12)]

J̃12′,21′(ω0) =

∫ ∞

−∞

dt12e
iω0t12θ12C̃[11′,22′] . (B.23)

Sometimes, it is covenient to average the coordinate r1 over the volume Vol, in

which case one should replace
∑

σ1
in Eq. (B.22) by

∫
dx1/Vol.

B.2. Keldysh approach with source fields

We now use the Keldysh real-time approach to rewrite C̃[11′,22′] in terms of correla-

tors whose dynamical and statistical properties are governed entirely by Ĥ0: first,

thermal weighting is done in the infinite past using the free density matrix ρ̂0, and

then the interaction is turned on adiabatically. For arbitrary operators ÂH and B̂H ,

this amounts to the replacement

〈ÂH(t1)B̂H(t2)〉 → 〈ÂH (t1 − t0)B̂H(t2 − t0)〉0 , (B.24)

where the initial time t0 is sent to −∞ so that all disturbances associated with

switching on the interactions have decayed in the infinite past (the limit t0 → −∞,

will be understood but not displayed below). Second, the time evolution of all
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operators is expressed in the interaction representation, using the familiar operator

identity

e−iH(ti−t0)/~ = e−iĤ0(ti−t0)/~ÛI (ti, t0) , (B.25a)

ÛI (ti, tj) = T e−
i
~

∫ ti
tj
dt3ĤiI (t3) , (B.25b)

ÂI (ti) = eiĤ0(ti−t0)/~ÂSe
−iĤ0(ti−t0)/~ , (B.25c)

where T is the time-ordering operator (the anti-time-ordering operator, needed for

Û †
I , will be denoted by T̄ ). The correlator C̃[11′,22′] then becomes

C̃[11′,22′] =
1

~
〈Û †

I (t1, t0)n̂11′I(t1)ÛI (t1, t2)n̂22′I(t2)ÛI (t2, t0)〉0

− 1

~
〈Û †

I (t2, t0)n̂22′I(t2)Û
†
I (t1, t2)n̂11′I(t1)ÛI (t1, t0)〉0 . (B.26)

This expression can be recovered via functional derivates from the following

construction:

C̃[11′,22′] = i
δρ̃11′(t1, t0)

δṽ2′2

∣∣∣∣
ṽ=0

, (B.27a)

ρ̃11′(t1, t0) ≡
〈Û †

IB(t1, t0)n̂11′I(t1)ÛIF (t1, t0)〉0
〈Û †

IB(t1, t0)ÛIF (t1, t0)〉0
, (B.27b)

ÛIa(t1, t0) ≡ T e− i
~

∫ t1
t0
dt3[ĤiI (t3)+v̂I(t3)] , (B.27c)

v̂I(t3) ≡
∫
dx3,3̄ṽ3̄3

(t3)n̂33̄I(t1) . (B.27d)

The index a = F,B will be used to distinguish propagation associated with UI or

U †
I in Eq. (B.26), i.e. with the forward or backward parts of the Keldysh contour,

respectively. Since Û †
IBÛIF = 1, the denominator in Eq. (B.27b), included for later

convenience, in fact equals unity. ρ̃11′(t1, t0) = ρ̃(t1, t0;x1, x1′) is the reduced single-

particle density matrix. We call it “reduced”, since the thermal average 〈 〉0 in

Eq. (B.27b) traces out all electron degrees of freedom but one, to be called the

“singled-out electron”, for which the others constitute an effective environment.

Note that we have defined ρ̃11′(t1, t0) in the presence of a source termd to generalize

this to v̂(t3), defined by Eq. (B.27d) [which uses the conventions of Eq. (B.6)] on the

interval t3 ∈ [t0, t1] in terms of a real c-number “source field” ṽ
3̄3

(t3) = ṽ(t3;x3̄, x3)

that couples to the (not normal-ordered) operator n̂33̄I(t3). The source field is

devoid of physical meaning, and is introduced merely as a mathematical device

dFor our purpose, it turns out to be sufficient to use the same source term v̂ and source field ṽ3̄3

on the forward and backward contour; to calculate correlators more general than ρ̃
11′

, one would
introduce a separate source term v̂a and corresponding source fields ṽa

3̄3
for each of the forward

and backward contours, a = F/B. The corresponding generalizations below are straightforward.
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to generate C̃[11′,22′] via functional differentiation. For ṽ = 0, our reduced density

matrix ρ̃12(t, t0) corresponds to ρ(t; r1, r2) of (GZ-II.20) of GZ, who simply call it

“density matrix”.

In the usual Keldysh approach, all time integrals involving the interaction extend

from −∞ to ∞. This can also be achieved in the present approach, if desired, by

inserting a factor of 1 = Û †
IB(t∞, t1)ÛIF (t∞, t1) just to the left or right of n̂11′I(t1)

in the first or second lines of Eq. (B.26), respectively, and taking the limit t∞ → ∞,

t0 → −∞. However, the actual value chosen for t∞ does not matter, and in the

present approach, it is actually simplest to use t∞ = t1.

B.3. Hubbard-Stratonovich transformation

Following GZ, we now decouple the interaction term Ĥi in ÛIa using a Hubbard-

Stratonovich transformation that introduces a path-integral over a further pair of

real, spin-independent c-number fields Va(t3, r3):

ÛIa(t1, t0) =

∫
DVa(t3, r3)Ûa(t1, t0)eiS

0a
V (t1,t0)/~

∫
DVa(t3, r3)e

iS0a
V (t1,t0)/~

, (B.28a)

S0a
V (t1, t0) =

∫ t1

t0

dt3

∫
dq

(2π)3
V̄a(t3,−q)V̄a(t3, q)

2V̄ int(q)
, (B.28b)

Ûa(t1, t0) = T e− i
~

∫ t1
t0
dt3[V̂a(t3)+v̂I(t3)] , (B.28c)

V̂a(t3) =

∫
dx3eVa(t3, r3) : n̂33I : (t3) . (B.28d)

The fields Va(t3, r3) and their Fourier transforms V̄a(t3, q) are defined on the inter-

val t3 ∈ [t0, t1] on the upper or lower Keldysh contour for a = F or B, respectively

(i.e., the time argument of Va is understood to carry an implicit index a). By using

Eqs. (B.28a) to rewrite all ÛIa in Eq. (B.27b) in terms of Ûa, the reduced density

matrix can be expressed as

ρ̃11′(t1, t0) = 〈ρ̃11′(t1, t0)〉V , (B.29a)

ρ̃11′(t1, t0) ≡
〈Û†
B(t1, t0)n̂11′I(t1)ÛF (t1, t0)〉0

Z(t1, t0)
, (B.29b)

Z(t1, t0) ≡ 〈Û†
B(t1, t0)ÛF (t1, t0)〉0 , (B.29c)
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〈F [Va]〉V ≡

∫
DVF

∫
DVBF [Va]e

iStot
V (t1,t0)/~

∫
DVF

∫
DVBeiS

tot
V (t1,t0)/~ ,

(B.29d)

iStot
V (t1, t0) ≡ i(S0F

V − S0B
V ) + ~ lnZ . (B.29e)

In Eq. (B.29a), the reduced density matrix ρ̃11′ is expressed as a functional aver-

age, over all configurations of the fields Va, of the functional ρ̃11′(t1, t0). The latter,

defined in Eq. (B.29b) (and called ρV by GZ), is the reduced density matrix cor-

responding to a particular configuration of the fields Va. For any such functional

F [Va], the functional average is defined by the functional integral (B.29d), with

an effective action Stot
V given by (B.29e). Note that Stot

V , via its dependence on Z,

depends on the source field ṽ.

B.4. Roadmap for GZ’s strategy

If, in Eq. (B.29b) for ρ̃11′(t1, t0), the evolution operators Ûa are expanded in powers

of the V̂a’s, the standard Keldysh perturbation expansion for these correlators would

result (as recapitulated in Appendix E). The approach of AAG18,19 amounts to

doing just such an expansion to order V̂ 2
a . However, such a perturbation expansion

has infrared divergencies which are cured only when the leading divergencies are

summed to all orders (or by introducing an infrared cut-off by hand, such as an

external magnetic field, as done by AAG). At present, no exact way of summing the

entire perturbation series is known. Already in 1982, AAK10 were able to perform a

summation of the leading infrared divergencies by treating V̂a as a classical field; this

indeed cured the infrared problems, but neglects the quantum nature of V̂a, hence

corrections to AAK’s calculation are to be expected at sufficiently low temperatures.

GZ attempted to proceed both beyond AAK’s calculation (by including quan-

tum corrections) and beyond perturbation theory (by summing an infinite subset of

the perturbation series). The essence of their idea was to integrate out all electron

degrees of freedom but one, the “singled-out electron”, thereby deriving an influ-

ence functional describing the effect of the other electrons (an effective dissipative

environment) on the diffusive motion of the singled-out electron. To this end, they

adopted the following strategy, which we shall repeat below in our own notation:

(A) An exact equation of motion is derived for ρ̃11′(t, t0) [(GZ-II.24), our (B.33)].

(B) From this, another exact equation of motion is derived for the linear response

δρ̃11′(t1, t0) to the source field ṽ [(GZ-II.39), our (B.35)], together with the form of

the effective Hamiltonian H̃a
ij [(GZ-II.40), our (B.36)] which governs the dynamics

of δρ̃11′(t1, t0).

(C) This second equation of motion is integrated exactly [(GZ-II.41), our (B.38)]

in terms of effective evolution matrix functions Ũaij (t, t
′) [(GZ-II.42), our (B.40)].

(D) A functional derivative of δρ̃11′(t1, t0) w.r.t. the source field ṽ is taken to obtain
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an expression for the conductivity [(GZ-II.49), our (B.52) or (B.54)], which involves

a functional average of the form 〈ŨF ρ̃0ŨB〉V over the fields Va [Eqs. (B.51)], where

ρ̃0 ≡ ρ̃Va=0 is the (initial) density matrix in the absence of interactions. The purpose

of the subsequent steps (E) to (G) is to facilitate the evaluation of this functional

average.

(E) The evolution functions Ũaij introduced in (C) are represented as path in-

tegrals over the degrees of freedom of a single electron, whose Hamiltonian de-

pends on the fields Va. We shall use a coordinate-space-only path integral
∫
D̃′(R)

[Eq. (B.55)], thereby deviating somewhat from GZ, who use position-momentum

space integrals
∫
DRaDP a [(GZ-II.44), our Eq. (D.1a)]. The relation between GZ’s

position-momentum and our coordinates-only path integrals is explained in time-

slicing detail in Appendix D.

(F) The action Stot
V (more specifically, the term lnZ) that governs the weights

of different configurations of the fields Va in the functional average 〈ŨF ρ̃0ŨB〉V , is

expanded to second order in V̂a, corresponding to the standard RPA approximation

[(GZ-II.30), our Eqs. (B.61) and (B.67)].

(G) The density matrix ρ̃ii′(ti, t0), wherever it still occurs, is approximated by its

noninteracting (Va = 0) version ρ̃0
ii′ . [GZ make this approximation twice: (i) in the

propagators Ũaij , to obtain (GZ-II.43), and (ii) in the initial-time thermal averaging,

to obtain (GZ-II.49); we use the analogue of (i) [Sec. B.5.7], but do not need (ii).]

(H) The functional average 〈 〉V , which through the approximations (F) and (G)

has been reduced to a Gaussian functional integral, is performed to yield an effective

action iS̃R + S̃I [(GZ-II.54), (GZ-II.55), our (B.78), (B.82)]. This effective action

determines the influence functional of the environment (the other electrons) on the

singled-out electron.

In GZ’s paper, the above steps are presented in a somewhat different order:

approximation (F) is discussed already after (B), and approximation (G) is made

directly after (C). We prefer to carry out the steps in the order stipulated above,

because this allows us to postpone each approximation to the latest possible stage.

The results derived by the above steps are used in Secs. B.6 and C.3 to make

contact with diagrammatic perturbation theory, and in the main text [Sec. 4] to

calculate the decoherence time. For the latter, we continue to follow GZ’s approach

in spirit, but use a more careful treatment of a certain “Pauli factor”; remarkably,

this turns out to lead to AAK’s result for τϕ instead of GZ’s. Although the details

of this calculation are presented in the main text, we shall now summarize them

here, too, in order that the present brief overview of GZ’s strategy be complete.

(I) The term iS̃R in the effective action turns out to depend on a certain “Pauli

factor” (δ̃ − 2ρ̃0), which we treat differently from GZ: in their position-momentum

path integral, it is represented as [1− 2n0(h̃0)], where h̃0(R(t),P (t)) is the single-

particle energy of the singled-out electron, which GZ assume to remain constant

during the diffusive motion. In our opinion, this assumption neglects recoil effects
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associated with electron-electron interactions [see Sec. B.6.2]. Therefore, we instead

use a Fourier representation of the effective action, in which the Pauli factor is

represented as [1 − 2n0(~(ε − ω̄))] [Eq. (B.90)], where ~ε corresponds to GZ’s h̃0,

and ω̄ is the frequency transfer upon emission or absorption of a photon.

(J) The path integrals
∫
D̃R′ for the singled-out electron are performed in the saddle

point approximation, meaning that only the contributions of pairs of time-reversed

diffusive (or “random walk”) paths are retained.

(K) The average of the influence functional over all such random walk paths, namely

〈e−(iS̃R+S̃I)~〉rw, is approximated by exponentiating the average of the effective

action, e−〈iS̃R+S̃I〉rw/~ [(GZ-II.67), our Sec. 4].

(M) The exponent F (τ) = 〈iS̃R+ S̃I〉rw/~, a growing function of time, is evaluated

by Fourier transforming the effective action into the frequency-momentum domain

and averaging the Fourier exponents, using 〈eiq̄·[R(t3)−R(t4)]〉rw ' e−q̄
2D|t34| [our

Eq. (6)].

(L) The resulting function F (τ) is used to identify the decoherence time as the

time for which F (τϕ) becomes of order unity [(GZ-II.67), (GZ-II.70), or (GZ-III.6)

(GZ-III.22), or our Eq. (18)].

B.5. Repeating GZ’s strategy in detail

The remainder of this appendix is devoted to a detailed discussion of steps (A) to

(I), using our own notation.

B.5.1. Exact equation of motion for ρ̃ii′ (t, t0)

To derive an exact equation of motion for ρ̃ii′ (t, t0), we start from the simple

relations

i~∂tψ̂I(t, x) = h0(x)ψ̂I (t, x) , (B.30a)

i~∂tÛa(t) = [V̂a(t) + v̂I(t)]Ûa(t) . (B.30b)

Since all functions in Eqs. (B.30) are evaluated at the same time t, as are all other

functions needed below up to Eq. (B.37), we shall suppress the time argument below

and use the shorthand notation

ρ̃ii′ = ρ̃ii′(t, t0) , Ûa ≡ Ûa(t, t0) , n̂ii′ = n̂ii′I (t) , (B.31a)

h0i ≡ h0(xi) , Vai ≡ Va(t, ri) , δ̃ii′ = δ(d)(ri − ri′ )δσiσi′
. (B.31b)

From Eqs. (B.30), we then readily find

i~∂tρ̃ii′ = Z−1[i~∂t〈Û†
Bn̂ii′ ÛF 〉0 − ρ̃ii′ i∂tZ] , (B.32a)

i~∂tZ =

∫
dxk(eVFk − eVBk)〈Û

†
B : n̂kk : ÛF 〉0 , (B.32b)
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i~∂t〈Û†
Bn̂ii′ ÛF 〉0 = (h0i − h0i′)〈Û†

B n̂ii′ ÛF 〉0

+

∫
dxk〈Û†

B [n̂ii′(eVFk : n̂kk :) − (eVBk : n̂kk :)n̂ii′ ]ÛF 〉0

+

∫
dxk,k̄vk̄k〈Û

†
B [n̂ii′ , n̂kk̄]ÛF 〉0 . (B.32c)

Equation (B.32a) can be brought into the form

i~∂tρ̃ii′ = [h0i + eVFi]ρ̃ii′ − ρ̃ii′ [h0i′ + eVBi′ ]

−
∫
dxk[ρ̃ik(eVFk − eVBk)ρ̃ki′ + ρ̃ikṽki′ − ṽik ρ̃ki′ ] (B.33)

by using the identities

n̂ii′ n̂kk̄ = ψ̂†
i′ [δ̃ik̄ − ψ̂†

k̄
ψ̂i]ψ̂k = n̂ki′ δ̃ik̄ + ψ̂†

i′ ψ̂
†

k̄
ψ̂kψ̂i ,

n̂
kk̄
n̂ii′ = ψ̂†

k̄
[δ̃ki′ − ψ̂†

i′ ψ̂k]ψ̂i = n̂
ik̄
δ̃ki′ + ψ̂†

i′ ψ̂
†

k̄
ψ̂kψ̂i ,

Z−1〈Û†
Bψ̂

†
i′ ψ̂

†

k̄
ψ̂kψ̂iÛF 〉0 = ρ̃ii′ ρ̃kk̄ − ρ̃

ik̄
ρ̃ki′ .

(B.34)

The last of these can be checked by expanding both sides in powers of V̂a, and

evaluating each term in the expansion using Wick’s theorem. Since V̂a is quadratic

in ψ̂’s, one readily finds that the combinatorial factor for each topologically distinct

diagram is just equal to unity, and that the left- and right-hand sides of Eq. (B.34)

generate precisely the same set of topologically distinct diagrams.

Equation (B.33) is the desired equation of motion for ρ̃ii′ . [It reduces to (GZ-

II.24) upon setting the source fields to zero, ṽ = 0 and recalling our footnote c.]

The term on the right-hand side of Eq. (B.33) that contains a term quadratic in ρ̃,

coupling to e(VF −VB), will be seen below to be responsible for enforcing the Pauli

principle. Note that Eq. (B.33) contains only c-number functions (no hats occur).

Hence the order of factors in products does not matter as long as their subscripts

are displayed explicitly (the derivatives contained in the functional operator h0i′

should be understood to act on index i′ of ρ̃ii′ even if we write them in the order

ρ̃ii′h0i′). Nevertheless, the subscripts do imply that the products have the structure

of matrix multiplication in coordinate space; we hence chose to write the factors in

an order that is suggestive of this matrix multiplication. [This order conforms to

that used by GZ, in whose notation the coordinate indices are not displayed, but

are implicit.]

B.5.2. Equation of motion for δρ̃ii′ (t, t0)

Next, we expand the reduced density matrix to linear order in the source field

(which is sufficient for a linear response calculation of the conductivity) by writing

ρ̃ii′ = ρ̃
(ns)
ii′ +δρ̃ii′ , where the superscript (ns) denotes “no sources” and δρ̃ii′ is linear
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in ṽ. It satisfies the following equation of motion, found by expanding Eq. (B.33),

i~∂tδρ̃ii′ = D̃ii′ +

∫
dxı̄H̃

F
iı̄ δρ̃ı̄i′ −

∫
dxı̄′δρ̃iı̄′H̃

B
ı̄′i′ , (B.35a)

D̃ii′ ≡
∫
dxı̄ṽiı̄ρ̃

(ns)
ı̄i′ −

∫
dxı̄′ ρ̃

(ns)
iı̄′ ṽı̄′i′ , (B.35b)

where the effective Hamiltonians H̃F and H̃B are defined as followse:

H̃F
iı̄ ≡ h0iδ̃iı̄ + h̃FV iı̄ , H̃B

ı̄i ≡ δ̃ı̄ih0i + h̃BV ı̄i , (B.36a)

h̃FV iı̄ = δ̃iı̄eVF ı̄ − ρ̃iı̄(eVF ı̄ − eVBı̄) =
∑

α=±

w̃Fαiı̄ Vαı̄ ,

h̃BV ı̄i = eVBı̄δ̃ı̄i + (eVF ı̄ − eVBı̄)ρ̃ı̄i =
∑

α=±

Vαı̄w̃
Bα
ı̄i ,

(B.36b)

w̃a+iı̄ ≡ eδ̃iı̄ , w̃a−iı̄ ≡ sa
1

2
e
(
δ̃iı̄ − 2ρ̃

(ns)
iı̄

)
. (B.36c)

[Equations (B.36) correspond to (GZ-II.39,40); their −eVx(ri) corresponds to our

ṽii.] In Eqs. (B.35), the combination of indices iı̄ or ı̄′i′, one without bar, one with,

will always refer to two independent position indices associated with the same time

(i.e., tı̄ ≡ ti). The Hamiltonians H̃F and H̃B are associated with propagation

along the upper and lower Keldysh contours, which is why in Eq. (B.35a) they are

contracted from the left or right with the first or second index of δρ̃ii′ . In Eq. (B.36c)

for the vertices w̃aαiı̄ and elsewhere below, the symbol sa stands for “sign of a”, with

sF/B = ±1. The fields Vαı̄ = Vαı̄(tı̄, rı̄) (with α = ±) occuring in Eq. (B.36b) are

defined as symmetric and antisymmetric linear combinations of the fields Vaı̄ (i.e.,

the time and coordinate arguments of V+ı̄ and V−ı̄ on the upper and lower Keldysh

contours are both equal to (tı̄, rı̄)]:
(
V+ı̄

V−ı̄

)
≡
(

1/2 1/2

1 −1

)(
VF ı̄

VBı̄

)
. (B.37)

Since both HF
iı̄ and HB

ı̄i depend, through Vαı̄, on both VF ī and VBı̄, crossterms

will occur below that link the forward and backward Keldysh contours. Note that

the field Vαı̄, which shall always carry a “barred” index below, is contracted with

the second index of wFαiı̄ in h̃Fiı̄ or the first index of w̃Bαı̄i in h̃Fı̄i , respectively. Thus

V− and w̃a− “do not commute”, which will be important below. The factor (δ̃−2ρ̃)

in w̃a− will be seen below to account for the Pauli principle.

eNote that H̃a
iı̄, like h0i, is a c-number functional operator – the derivatives contained in h0iδ̃iı̄

get “transferred” onto the function it multiplies:
∫

dxı̄(∇
2
i δ̃iı̄)δρ̃ı̄k = ∇

2
i δρ̃ik ,

∫
dxı̄δρ̃iı̄(∇

2
ı̄ δ̃ı̄k) = ∇

2
kδρ̃ı̄k .
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All functions occuring in Eqs. (B.36) depend on the same time argument t, which

we henceforth display explicitly again. It is worth emphasizing that, through their

dependence on ρ̃
(ns)
iı̄ (t, t0), the expressions δρ̃ii′ , D̃iı̄, H̃

a
iı̄ and Ũaij [defined below in

Eqs. (B.40)] all explicitly depend on the initial time t0, too, although, for notational

brevity, this t0-dependence will be displayed below only for ρ̃ns
iı̄ (t, t0).

B.5.3. Exact expression for δρ̃ii′ (t, t0)

The formally exact solution of Eqs. (B.35) can be written in the form

δρ̃ii′ (t) = −
∫ t

t′0

dt′
∫
dxk,k̄Ũ

F
ik(t, t

′)D̃kk̄(t
′)ŨBk̄i′(t

′, t) , (B.38)

where the functions ŨFij (t, t′) and ŨBji (t
′, t) are defined by the requirements that

ŨFij (t, t) = ŨBji (t, t) = δ̃ij , (B.39a)

i~∂tŨ
F
ij (t, t′) =

∫
dxı̄H̃

F
iı̄ (t)Ũ

F
ı̄j (t, t

′) , (B.39b)

i~∂tŨ
B
ji (t

′, t) = −
∫
dxı̄Ũ

B
jı̄ (t′, t)H̃B

ı̄i (t) . (B.39c)

Equations (B.39) are fulfilled by time-ordered exponentials

ŨFij (t, t′) = [T e− i
~

∫ t
t′
dt3H̃

F (t3)]ij ,

≡ δ̃ij −
i

~

∫ t

t′
dt3H̃

F
ij (t3)

− 1

~2

∫ t

t′
dt3

∫ t3

t′
dt4

∫
dxkH̃

F
ik(t3)H̃

F
kj(t4) + · · · (B.40a)

ŨBji (t
′, t) = [T̄ e i

~

∫
t
t′
dt3H̃

B(t3)]ji ,

≡ δ̃ij +
i

~

∫ t

t′
dt3H̃

B
ji (t3)

− 1

~2

∫ t

t′
dt4

∫ t4

t′
dt3

∫
dxkH̃

B
jk(t3)H̃

B
ki(t4) + · · · (B.40b)

where we always take t > t′, and where each “internal” product of two factors

H̃a
ikH̃

a
kj that arises when expanding the exponential involves a further coordinate

integral
∫
dxk . [Below, we shall often suppress time arguments and use the short-

hand Ũaij ≡ Ũaij (ti, tj) and likewise Ũaı̄j ≡ Ũaı̄j (ti, tj).] Note that the time-ordered

exponentials (B.40a) and (B.40b) for ŨFij and ŨBij are defined in terms of the power

series expansions indicated above; the same is true for all path integral represen-

tations of ŨFij and ŨBij to be used below. Note also that Ũaij is spin-diagonal, since

this is the case for H̃a
iı̄(t) = δσiσı̄H̃

a(t, ri, rı̄) and ρ̃iı̄(t, t0) = δσiσı̄ ρ̃(t, t0; ri, rı̄).
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Equation (B.38) corresponds to GZ’s exact Eq. (GZ-II.41). Note that the proce-

dure by which it was obtained, namely, first differentiating ρ̃ and then integrating

δρ̃ w.r.t. t, has produced a result in which the reduced density matrix ρ(ns) appears

in the exponent, via its occurence in H̃a
ij and Ũaij . Accordingly, the effective action

to be derived below will likewise depend on ρ(ns).

Let us now also derive an equation of motion for the time evolution of the

density matrix in the absence of source fields, ρ̃
(ns)
ij′ , since we need it in Eq. (B.38),

where it enters via the D̃ of Eq. (B.35b). [This point is not discussed by GZ, who

simply replace ρ̃
(ns)
ij′ in Eq. (B.38) by ρ̃0

ij′ , as discussed in Sec. B.5.7.] Evidently,

the desired equation of motion for ρ̃
(ns)
ij′ is the ṽ = 0 version of that of ρ̃ij′ , namely

Eq. (B.33)ṽ=0, which can, in analogy to Eq. (B.35a) (without its first term), be

rewritten as

i~∂tρ̃
(ns)
ij′ =

∫
dxı̄H̃

′F
iı̄ ρ̃

(ns)
ı̄j′ −

∫
dx̄′ ρ̃

(ns)
i̄′ H̃

′B
̄′j′ . (B.41)

Here the primed Hamiltonians H̃ ′a
iı̄ are defined by equations identical to Eqs. (B.36)

for the unprimed ones, except that the vertices w̃aαiı̄ of Eq. (B.36c) are replaced by

primed vertices w̃′aα
iı̄ that are defined as followsf :

w̃′a+
iı̄ ≡ eδ̃iı̄ , w̃′a−

iı̄ ≡ sa
1

2
e(δ̃iı̄ − ya2ρ̃

(ns)
iı̄ ) . (B.42)

Here the yF/B ∈ [0, 1] are (arbitrary) real numbers, with yF + yB ≡ 1. It will

turn out below to be convenient to let the choice of values for yã depend on which

contour the current vertex at time t2ã is located: if it is on contour F/B, we shall

choose yF/B = 0 = 1 − yB/F (compactly: yã = 0 for ĵ(t2ã) on contour ã; Fig. B.1

below shows an example with ã = F ). The solution of Eq. (B.41) can be expressed

as

ρ̃
(ns)
ij′ (t, t0) = Ũ ′F

ik (t, t0)ρ̃
0
kk̄Ũ

′B
k̄j′(t0, t) , with yF + yB = 1 , (B.43a)

=






Ũ ′F
ik (t, t0)

∣∣∣
yF =0

ρ̃0
kk̄
ŨB
k̄j′

(t0, t) if yF = 0 , yB = 1 ,

ŨFik(t, t0)ρ̃
0
kk̄
Ũ ′B
k̄j′

(t0, t)
∣∣∣
yB=0

if yB = 0 , yF = 1 ,

(B.43b)

fThe reason for the extra ya in front of ρ̃
(ns)
iı̄ for w̃′a−

iı̄ , which is the only difference compared to

w̃a−
iı̄ of Eq. (B.36c), is as follows: The linear response equation of motion for δρ̃

ii′
contains two

different contributions that are quadratic in ρ̃, namely ρ̃
(ns)
ik eV

−kδρ̃
ki′

and δρ̃ikeV
−kρ̃

(ns)
ki′

, which
in Eq. (B.35a) were grouped with the first and second terms respectively. In contrast, the equation

of motion for ρ̃
(ns)
ij′

turns out to contain on the right-hand side just one type of term quadratic

in ρ̃, namely ρ̃
(ns)
ik eV

−kρ̃
(ns)
ki′

, with total weight 1. By using yF + yB = 1 in Eq. (B.42), we have

distributed this term with weights yF and yB among the two terms on the right-hand side of
Eq. (B.41).
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The primed propagators Ũ ′a
ij are defined analogously to Eqs. (B.40), but with

H̃ → H̃ ′ everywhere. In Eqs. (B.43), we have implemented the standard ini-

tial condition for the Keldysh approach, namely that at time t = t0, the den-

sity matrix was free, i.e., ρ̃
(ns)
ij′ (t0, t0) ≡ ρ̃0

ij′ . Below [cf. Eq. (B.50b)], we shall

insert Eqs. (B.43b), with t0 → −∞, into Eq. (B.38), where it enters via the

D̃ of Eq. (B.35b), to ensure that thermal averaging is done in the infinite past.

This is an important improvement relative to an approximation used by GZ, who

simply replace ρ̃
(ns)
ij′ (t, t0) in Eq. (B.38) by ρ̃0

ij′ ; they thereby effectively perform

thermal averaging with a nonequilibrium initial density matrix, as discussed in

Sec. B.5.7.

The way in which ŨFij , ŨBij and ρ̃
(ns)
ij differ from their free versions is evidently

through their dependence on the fields Va and the density matrix ρ̃ij in Eqs. (B.36).

Let us now briefly discuss their free versions. First, in the absence of all interactions,

the expression for the reduced density matrix ρ̃
(ns)
ij reduces to the form

ρ̃0
ij =

∑

λ

ψλ(xi)ψ
∗
λ(xj)n0(ξλ) = (ρ̃0

ji)
∗ , (B.44)

where n0(ξλ) = [eξλ/T +1]−1 is the Fermi function, and ψλ(xi) are the exact single-

particle eigenfunctions of h̃0i, with eigenvalues ξλ [cf. Eq. (B.15)]. Next, let Ũ0a
ij

denote the propagator to which Ũaij reduces in the absence of interactions, i.e., for

Vai = 0 in Eqs. (B.36) [so that H̃a
ij = h0iδ̃ij ]. Its explicit form is easily found by

constructing an object satisfying the defining Eqs. (B.39) for Vai = 0; the result is

independent of whether a = F or B, and given by:

Ũ0a
ij ≡ Ũ0

ij =
∑

λ

ψλ(xi)ψ
∗
λ(xj)e

−iξλtij/~ = i~(G̃Rij − G̃Aij ) , (B.45)

where G̃
R/A
ij = ±θ(±tij)(G̃>ij − G̃<ij ) are the standard free retarded and advanced

electron Green’s functions, with

∓i~G̃〈/〉
ij ≡

{
〈ψ̂†
I (tj , xj)ψ̂I (ti, xi)〉0

〈ψ̂I (ti, xi)ψ̂
†
I(tj , xj)〉0

}

=
∑

λ

ψλ(xi)ψ
∗
λ(xj)e

−iξλt/~n0(±ξλ) .

(B.46)

It follows that for a given time order, as occurs under a time-ordered integral, Ũ0a
ij

is equal to either a retarded or an advanced Green’s function; e.g., for ti > tj ,

we have Ũ0F
ij = i~G̃Rij and Ũ0B

ji = −i~G̃Aji. Nevertheless, it will be useful to

generally retain both terms in Eq. (B.45), because that allows expressions in-

volving the free reduced density matrix to be simplified by Fourier transform-

ing from the time to the frequency domain: for example, denoting the frequency

Fourier transform of Ũ0
ij(t) by Ũ0

ij(ω), we immediately find the exceedingly useful

relations:
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Fig. B.1. A pair of backward (B) and forward (F) paths contributing to J̃
(F )
12′,21′

(t1 , t2; t0), with

t1 > t2 > t0. There are two ways to view this figure: (i) Ignore the wavy interaction lines, double
dot vertices and frequency assignments; then this figure illustrates the second line of Eq. (B.51a),

and the solid or dashed lines represent the full unprimed (Ũ
F/B
ij ) or primed (Ũ ′

F
ij ) propagators,

respectively. (ii) Imagine the propagators ŨF/B and Ũ ′F to have been expanded in powers of the
interaction [as in Eq. (B.48)]. This generates a forward and backward backbone of free propagators
Ũ0F

ı̄j or Ũ0B
jı̄ (represented by either solid or dashed lines, which now have identical meanings),

which are respectively decorated by the vertices h̃F
V iı̄ and h̃B

V ı̄i (represented by a pair of dots;
both dots are associated with the same time, but the one drawn on the side of earlier times
is distinguished by a bar; the origin of this convention is explained in App. D, Fig. D.1). The
vertices generate, after averaging over the fields Vαı̄, the wavy interaction lines L̃ı̄a̄a′

, connected

to the barred dots. [The interaction lines are labelled according to Eq. (B.83) below: L̃aa′ stands
for L̃K

ı̄a ̄a′
, L̃R

ı̄a ̄a′
or L̃A

̄a′ ı̄a
, if generated by 〈V+ı̄a V+̄a′

〉V , 〈V+ı̄a V−̄a′
〉V , or 〈V−ı̄a V+̄a′

〉V ,

respectively, cf. Eq. (B.74b).] For both cases (i) and (ii), arrows are drawn to point from the second

index to the first index of each of ŨF
ı̄j , ŨB

jı̄ and L̃
K/R/A
ı̄a ̄a′

. Thus, they point from later to earlier times
along the backward Keldysh contour, and from earlier to later times along the forward Keldysh
contour (i.e., they form a continous loop, starting on the backward contour from t1 backwards
to t0 = −∞, then continuing on the forward contour from t0 = −∞ forwards via t2 to t1).
Finally, the frequencies label the interaction correlators L̃aa′(ω) and Green’s functions G̃R/A(ω)
and G̃K(ω) = tanh(~ω/2T )[G̃R − G̃A](ω) that arise (before disorder averaging) upon Fourier
transforming from the time to the frequency domain, as for Eqs. (B.85) or (C.16a) below. The
effective action defined in Eqs. (2) to (4a) of the main text neglects the frequency transfers ωi in the
arguments of all retarded and advanced electron Green’s functions [G̃R/A(ε−ωi−· · ·) → G̃R/A(ε)],
but, for every L̃R/A(ωi)G̃

K(ε−ωi), retains it in the factor tanh[~(ε−ωi)/~] of the accompanying
G̃K function. [As discussed in Sec. 3 or B.6.2, this is justified by the fact that all integrals over
frequency transfer variables are limited by Fermi factors to the range |~ωi| . T ].

∫
dxı̄ρ̃

0
iı̄Ũ

0
ı̄j(ω) = n0(~ω)Ũ0

ij(ω) = −i~G̃<ij (ω) , (B.47a)

∫
dxı̄[δ̃ − 2ρ̃0]iı̄Ũ

0
ı̄j(ω) = [1 − 2n0(~ω/2T )]Ũ0

ij(ω) = i~G̃Kij (ω) , (B.47b)

where GKij = G̃>ij + G̃<ij is the Keldysh function. Note, in particular, that by passing

to the frequency representation, the Pauli factor (δ̃ − 2ρ̃0) in Eq. (B.47b) gets
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mapped onto [1 − 2n0(~ω/2T )] = tanh(~ω/2T ), a fact that will be very useful in

Sec. B.6.2 below.

For future reference, we note that when the matrix propagators ŨFij and ŨBij
[with t > t′] are expanded in powers of h̃aV [i.e., in powers of the fields Vα, see

Eqs. (B.36b)], they take the form of time-ordered or anti-time-ordered power series,

respectively:

ŨFij (t, t′)

ŨBji (t
′, t)

}
=

∞∑

N=0

1

~N

∫ ti

tj

dt1

∫ t1

tj

dt2

· · ·
∫ tN−1

tj

dtN

∫
dx1,1̄dx2,2̄ · · · dxN,N̄

×





(−i)N Ũ0F
i1 h̃FV 11̄Ũ

0F
1̄2 · · · h̃F

VNN̄
Ũ0F
N̄j

(+i)N Ũ0B
jN̄
h̃B
V N̄N

· · · Ũ0B
21̄ h̃

B
V 1̄1Ũ

0B
1i

. (B.48)

These expansions [illustrated in Appendix D by the third row of Fig. D.1] are

alternative but equivalent to those of Eqs. (B.40), and, just as the latter, can be

regarded as formal definitions of Ũaij , and of all path-integral representations thereof

to be used below. Note that for each occurrence of a “vertex” h̃F
V lF l̄F

or h̃B
V l̄BlB

, the

vertex coordinates xla and xl̄a are both associated with the same time tl, and both

are integrated over in
∫
dxl,l̄ [cf. Eq. (B.6)]. This need for a double position integral

at each vertex is a direct consequence of the fact that the effective Hamiltonians

H̃a
ij of Eqs. (B.36) are nonlocal in space. Since the integrals in Eq. (B.48) are time-

ordered, each Ũ0F occuring in ŨF can be replaced by i~G̃R, and each Ũ0B in ŨB

by −i~G̃A [see Eq. (D.11c)]. Indeed, the latter replacements are, in effect, used in

the path integral representation of Ũa to be introduced below [Eq. (B.55)]. We have

nevertheless chosen to write Eq. (B.48) in terms of Ũ0a functions, as a reminder

that the density matrices occuring in the interaction vertices h̃aV can be converted

to Fermi functions using Eqs. (B.47).

B.5.4. Exact expression for conductivity

The density-density commutator C̃[11′,22′] [Eqs. (B.19), (B.27), (B.29a) and (B.38)]

can now be obtained by taking the functional derivative of δρ̃12(t) with respect to

the source field ṽ [occuring in (B.38) via D̃ of (B.35b)]. Henceforth writing t ≡ t1
and t′ ≡ t2, the result can be written as

C̃[11′,22′](t1 − t2) =
∑

ã=F,B

J̃
(ã)
12′,21′(t1, t2; t0) + C̃Hartree

[11′,22′] , (B.49)
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where C̃Hartree
[11′,22′] is a contribution irrelevant to weak localization, which will be

dropped henceforth.g The J̃ (ã)’s are defined in terms of the correlator

J̃V12′,22̄′,2̄1′(t1, t2; t0)

≡ 1

~
ŨF12′(t1, t2)ρ̃

(ns)

22̄′
(t2, t0)Ũ

B
2̄1′(t2, t1) (B.50a)

=
1

~

∫
dx0,0̄Ũ

F
12′(t1, t2)Ũ

′F
20 (t2, t0)ρ̃

0
00̄Ũ

′B
0̄2̄′(t0, t2)Ũ

B
2̄1′(t2, t1) , (B.50b)

[the second line follows via Eq. (B.43a)] by:

J̃
(F )
12′,21′(t1, t2; t0) ≡

∫
dx2̄〈J̃V12′,22̄,2̄1′(t1, t2; t0)〉V,ns

=

∫
dx0,0̄

1

~
〈ŨF12′ Ũ ′F

20 ρ̃
0
00̄Ũ

B
0̄1′〉y

F =0
V,ns , (B.51a)

J̃
(B)
12′,21′(t1, t2; t0) ≡ −

∫
dx2̄〈J̃V12̄,2̄2′,21′(t1, t2; t0)〉V,ns

= −
∫
dx0,0̄

1

~
〈ŨF10ρ̃0

00̄Ũ
′B
0̄2′ Ũ

B
21′〉y

B=0
V,ns . (B.51b)

J̃ (F ) [illustrated in Fig. B.1] and J̃ (B) denote correlators that have a current vertex

inserted on the forward or backward Keldysh contours, respectively. As a notational

reminder, the indices 2, 2′, and 2̄ here all refer to the same time, t2 in this case,

and after performing the derivatives implicit in j11′ and hext
22′ , we have to set 2 = 2′.

However, x2̄ in Eqs. (B.51) is an independent integration variable. The subscript ns

(for “no sources”) in 〈 〉V,ns indicates that, following the prescription of Eq. (B.27a),

all remaining ṽ-dependencies are to be dropped henceforth by setting ṽ = 0. The

gThe term C̃Hartree
[11′ ,22′]

in Eq. (B.49) has the form

C̃Hartree
[11′ ,22′] = i

〈
ρ̃12(t1, t0)

δ ln Z

δṽ2′2(t2)

〉

V,ns

− i〈ρ̃12(t1 , t0)〉V,ns

〈
δ ln Z

δṽ2′2(t2)

〉

V,ns

,

δ ln Z

δṽ2′2(t2)
= −i

1

~Z

[
〈Û†

B(t1 , t0)ÛF (t1, t2)n̂22′I(t2)ÛF (t2 , t0)〉0

−〈Û†
B(t2 , t0)n̂22′I(t2)Û†

B(t1, t2)ÛF (t2, t0)〉0
]

,

and arises since the effective action Stot
V of Eq. (B.29e) in the functional average (B.29d) depends,

via ln Z, on ṽ too. C̃Hartree
[11′,22′]

corresponds to (GZ-II.47) and is neglected by GZ [see the discussion

after (GZ-II.47)], because in the absence of interactions, it vanishes entirely, and hence does not
contribute to the weak localization correction to the conductivity (in other words, C̃Hartree

[11′ ,22′]
is

irrelevant to the question how this correction is affected by interactions). We shall not consider
it further either, since in diagrammatic terms it corresponds to Hartree contributions to the
electron Green’s functions, which merely renormalize the magnitude of the conductivity (and
were neglected by AAG,18,19 too).
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second lines of Eqs. (B.51a) and (B.51b), in which we set yã = 0 for the corre-

lator J̃ (ã) containing the current vertex on contour ã, follow from Eq. (B.50b) for

J̃V12′,22̄′,2̄1′
by using the first or second line of Eq. (B.43b) for Ũ ′F ρ̃0Ũ ′B , respectively

[thereby conveniently avoiding primed propagators Ũ ′ under the x2̄-integrals on the

“other” contour ã′ 6= ã, which thus have the form
∫
dx2̄Ũ

ã′

i2̄ Ũ
ã′

2̄j = Ũ ã
′

ij ; the latter

composition rule follows from Eq. (B.45) and the completeness of the wavefunctions

ψλ(xi) occuring therein.]

Inserting Eq. (B.49) for C̃[11′,22′] into Eq. (B.22a), the expression for σDC that

results upon representing the applied field in terms of a scalar potential, and then

relabelling x2 ↔ x2̄ in the term containing J̃ (B), we find:

σDC =
e2

2md

∑

σ1

∫ t1

−∞

dt2

∫
dx2,2̄[r2 − r2̄]

· (∇1 − ∇1′)〈J̃V12′ ,22̄,2̄1′(t1, t2; t0)〉V,ns . (B.52)

Eq. (B.52) for the DC conductivity is analogous (but, as discussed below, not

identical) to (GZ-II.49) [the factor ŨF12′(t1, t2)Ũ
B
2̄1′

(t2, t1) which occurs in our

J12′,22̄,2̄1′(t1, t2; t0) is the analogue of the function J(t1, t2; r1, r
′
1; r2, r2̄) occuring

in Eqs. (GZ-II.49) and (GZ-II.50)]. In deriving Eq. (B.52), no approximations have

been made, apart from not displaying the Hartree terms [cf. footnote g].

Instead of (B.22a) and (B.52), it will be more convenient for our purposes to use

Eq. (B.22b) as alternative expression for σDC, derived by representing the applied

external field via a vector potential. The correlator J̃12′,21′(ω0) occuring therein can

[via Eq. (B.49)] be expressed as:

J̃12′,21′(ω0) ≡
∫ ∞

−∞

dt12e
iω0t12 lim

t0→−∞

∑

ã=F,B

θ12J̃
(ã)
12′,21′(t1, t2; t0) . (B.53)

Since J̃12′,21′ stems from the commutator C̃[11′,22′] [Eq. (B.19)], whose terms satisfy

〈n̂11′H n̂22′H〉 = 〈n̂22′H n̂11′H〉∗, the correlators J̃ (a) satisfy

J̃
(B)
12′,21′(t1, t2; t0) = −J̃ (F )∗

1′2,2′1(t1, t2; t0) , J̃
(B)
12′,21′(ω0) = −[J̃

(F )
1′2,2′1(−ω0)]

∗ .

The first of these [which implies the second] is manifestly obeyed by Eqs. (B.51).

Taylor-expanding Eq. (B.22b) using J̃(ω0) = J̃(0) + ω0J̃
′(0) + · · · , and separating

σDC = σDC, real + iσDC, imag into real and imaginary parts, we obtain

σDC, real =
∑

σ1

1

d

∫
dx2j11′ · j 22′ J̃ ′

12′,21′(0) , (B.54a)

iσDC, imag = lim
ω0→0

1

ω0

∑

σ1

[
ie2〈n̂11H〉

m
+

1

d

∫
dx2j11′ · j22′ J̃12′,21′(0)

]
. (B.54b)

Since we have taken the DC-limit ω0 → 0, the imaginary part σDC, imag must be

strictly equal to 0 (to all orders in the interaction), which is a useful consistency

check.
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In Appendix C we show how Eqs. (B.54) can be massaged into more familiar

expressions for σDC, both in the absence and presence of interactions [cf. Eqs. (C.3),

(C.8b), (C.28b)].

B.5.5. Coordinate-space path-integral representation for Ũaij

In this subsection, we shall derive path integral expressions for the objects in terms

of which the conductivity is expressed in Eq. (B.54a), namely the propagators Ũaij
[Eq. (B.40)] and the interaction-averaged correlators 〈J̃ (ã)〉V [Eqs. (B.51)]. We de-

viate from GZ’s approach, who used a path integral
∫
DR

∫
P over both coordinate

and momentum space, in that we shall use coordinate-space-only path integrals∫
D̃′(R), because that makes possible a more accurate treatment of the crucial

nonlocal Pauli factors (δ̃ − 2ρ̃) in the effective Hamiltonian H̃a of Eq. (B.36).

We begin from the power series expansions (B.48) of the evolution matrix func-

tions Ũaij (t, t
′) of Eqs. (B.40) in powers of h̃aV , and introduce, as a shorthand for

these expansions, the following coordinate space path integrals:

ŨFij (t, t′)

ŨBji (t
′, t)

}
=

∫ Ra(t)=ri

Ra(t′)=rj

D̃′RaeisaS̃
a
0 (t,t′)/~ exp

[
−isa

~

∫ t

t′
dt3

{
h̃FV 3F 3̄F

h̃BV 3̄B3B

]
. (B.55)

Here sa stands for sF/B = ±, and the index value a = F or B should be used for the

upper or lower term in the curly bracket, respectively. The coordinate-space path

integral is over all paths Ra(t3) that begin at time t′ at point rj and end at time t

at point ri; the time t3 that is used to parametrize this path Ra(t3) is understood

to refer to the upper or lower Keldysh contour for a = F or B, respectively [in this

sense, an index a on t3 is implicit, as in Ra(t3a)]. The objects S̃a0 and h̃aV in the

exponential factors in Eq. (B.55) are both functionals of the path Ra(t3): S
a
0 is the

standard action for a noninteracting electron in a disorder potential,

S̃a0 (t, t′)[Ra(t3)] ≡
∫ t

t′
dt3

[
1

2
mṘ

a2
(t3) − Vimp(Ra(t3))

]
, (B.56)

whereas in the second exponential, we used the following shorthand notation:

h̃FV 3F 3̄F
=
∑

α=±

w̃Fα3F 3̄F
Vα3̄F

=
∑

α=±

w̃Fα
[
t3, r

F
3 (t3), r

F
3̄ (t3)

]
Vα
[
t3, r

F
3̄ (t3)

]
, (B.57a)

h̃BV 3̄B3B
=
∑

α=±

Vα3̄B
w̃Bα3̄B3B

=
∑

α=±

Vα
[
t3, r

B
3̄ (t3)

]
w̃Bα

[
t3, r

B
3̄ (t3), r

B
3 (t3)

]
. (B.57b)

In Appendix D, we give an explicit definition of the path integral Eq. (B.55) by

time-slicing the time interval [t′, t] [Sec. D.4], and a detailed demonstration that
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it satisfies the defining Eqs. (B.39) [Sec. D.2]. The explicit derivation given there

shows that, when writing down the path integral (B.55), the following points are

to be implicitly understood [see also Fig. D.1 of Appendix D]: (i) The path integral

(B.55) is simply a short-hand for the time-ordered power series expansion (B.48),

with (−i/~)Ũ0F
ı̄F jF

replaced by G̃Rı̄F jF and (i/~)Ũ0B
jB ı̄B

by G̃AjB ı̄B [cf. Eq. (D.11c)]. (ii)

For each occurrence of a “vertex” h̃FV 3F 3̄F
or h̃BV 3̄B3B

, the vertex coordinates ra3(t3)

and ra3̄(t3) are both associated with the same time t3, and both are assumed to

be integrated over in the path integral [as in Eq. (B.48)], thereby taking into ac-

count the nonlocal nature of the Hamiltonians h̃aV ij . (iii) The associated integrations∫
dx3,3̄ are understood to be included in the measure

∫
D̃′Ra (the prime serves as

reminder of this fact), in addition to the integrations associated with propagators

between vertices. (iv) Vertices are connected by propagators of the form G̃Rı̄F jF or

G̃AjB ı̄B on the forward or backward Keldysh contours, respectively. However, since

these propagators occur under time-ordered integrals anyway, they can equally well

also be written as (−i/~)Ũ0F
ı̄F jF

or (i/~)Ũ0B
jB ı̄B

, as is convenient [in order to exploit

Eq. (B.47)] whenever they are contracted with a density matrix ρ̃0
iF ı̄F or ρ̃0

ı̄BiB .

Now use the path integral representation (B.55) (twice) in Eq. (B.50b) for

〈J̃V 〉V,ns, and interchange the order of averages, 〈
∫
D̃′(R) · · ·〉V →

∫
D̃′(R)〈· · · 〉V .

[The latter step could have been postponed until the beginning of Sec. B.5.8, but

is used already here, since it simplifies subsequent expressions. Its use, sooner or

later, is a crucial ingredient in GZ’s approach. Its far-reaching consequences are

discussed in detail in Appendix A.4.] We obtain

〈J̃V12′,22̄′,2̄1′(t1, t2; t0)〉V,ns =
1

~

∫
dx0F ,0̄B

ρ̃0F 0̄B

×F
∫ 1F

2′

F

B

∫ 1′

B

2̄B

D̃′(R)F

∫ 2F

0F

B

∫ 2̄′

B

0̄B

D̃′(R)F̃(t1,t0)[R
a] , (B.58)

where F

∫
B

∫
D̃′(R) is used as a shorthand for the following forward and backward

path integral between the specified initial and final coordinates and times:

F

∫ iF

jF

B

∫ ı̄B

̄B

D̃′(R) · · · ≡
∫ RF (tFi )=rF

i

RF (tFj )=rF
j

D̃′RF (t3)e
iS̃F

0 (tFi ,t
F
j )/~

×
∫ RB(tBi )=rB

ı̄

RB(tBj )=rB
̄

D̃′RB(t3)e
−iS̃B

0 (tBi ,t
B
j )/~ · · · . (B.59)

The influence functional F̃(t1,t0)[R
a] in Eq. (B.58) is defined by the following func-

tional integral over all configurations of the fields V±3 = V±(t3, r3) of Eqs. (B.37),

with t3 ∈ [t0, t1]:

F̃(t1,t0)[R
F (t3);R

B(t3)] ≡

∫
DV+

∫
DV−e

i
~ [Stot

V −B̃·V](t1,t0)

∫
DV+

∫
DV−e

i
~
Stot

V (t1,t0)
, (B.60a)
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B̃ · V(t1, t0) ≡
∫ t1

t0

dt3

∫
dr3

∑

α=±

B̃α(t3, r3)Vα(t3, r3) , (B.60b)

B̃α(t3, r3) ≡ sF W̃
Fα
3F 3̄F

δ(r3 − r3̄F
) + sBW̃

Bα
3̄B3B

δ(r3 − r3̄B
) , (B.60c)

W̃ aα
33̄ ≡ θ32w̃

aα
33̄ + θ23w̃

′aα
33̄ . (B.60d)

Here Stot
V (t1, t0) is given by Eq. (B.29e), and Eq. (B.60c), which defines the field

B̃α3 = Bα(t3, r3), follows from using Eqs. (B.57) or a primed version thereof, for

t3 > t2 or t3 < t2, respectively. The distinction between the two time orderings,

which is reflected in the definition (B.60d) of the vertices W̃ aα
33̄ (and not noted by

GZ, since they set t0 = t2), is necessary, since Eq. (B.50b) correspondingly features

unprimed or primed propagators Ũaij or Ũ ′a
ij , respectively, which have different ver-

tices [compare Eqs. (B.36c) and (B.42)]. Note that B̃α3 is itself a functional of both

the paths RF (t3) and RB(t3). The influence functionalh F̃(t1,t0)[R
a] describes the

effect of all other electrons on a pair (forward and backward) of singled-out electron

trajectoriesRF (t3) and RB(t3) between the initial time t0 and final time t1. Impor-

tantly, this influence functional incorporates the Pauli principle, via the presence

of the Pauli factor (δ̃ − 2ρ̃) in w̃a−.

B.5.6. RPA approximation

To evaluate the influence functional F̃(t1,t0) explicity, our next task is to perform

the functional integrals
∫
DVα stipulated in Eq. (B.60a). As a first (standard) step

toward making these integrals Gaussian, i.e. doable, we apply (following GZ) the

RPA approximation: we approximate the effective action Stot
V of Eq. (B.29e) by the

part quadratic in the fields V , say

iS
(2)
V (t1, t0) = i(S0F

V − S0B
V ) + ~Z(2) ≡ −1

2
[V · Ã · V ](t1, t0) (B.61a)

= −1

2

∫ t1

t0

dt3

∫ t1

t0

dt4

∫
dr3dr4

∑

αα′

Vα3Ãαα′

34 Vα′4 , (B.61b)

so that Eq. (B.60a) becomes

F̃(t1,t0)
RPA−−−−→

∫
DV+

∫
DV−e−

1
2~

V·Ã·Ve−
i
~
B̃·V

∫
DV+

∫
DV−e−

1
2~

V·Ã·V
. (B.62)

hThe term “influence functional” is used here in precisely the sense in which Feynman used it:
Our F̃23[Ra] is analogous to the quantity F [q(t), q′(t)] of Eq. (12)–(90) of R. P. Feynman and
A. R. Hibbs, “Quantum Mechanics and Path Integrals”, McGraw-Hill (1965).
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To find Ã, we have to find an explicit expression for the term ~Z(2) in Eq. (B.61a),

which arises from expanding the factor lnZ = Z(2) +O(V 3
a ) to second order in Va,

using

Z(t1, t0) = 1 + Z(1) + Z(2) + O(V 3
a ) , (B.63a)

Z(2) = − 1

2~2

∫ t1

t0

dt3

∫ t1

t0

dt4
{
〈T V̂F (t3)V̂F (t4)〉

+ 〈T̄ V̂B(t3)V̂B(t4)〉 − 2〈V̂B(t3)V̂F (t4)〉0
}
, (B.63b)

and noting that Z(1) vanishes, since V̂a is normal-ordered [cf. Eq. (B.28d)]. Express-

ing Eq. (B.63b) through the fields Vαi (α = ±1) of Eq. (B.37), we find

~Z(2) = −
∫ t1

t0

t3

∫ t1

t0

dt4

∫
dr3dr4(iV−3χ̃34V+4 + V−3η̃34V−4) , (B.64)

where χ̃ij (the charge susceptibility) and η̃ij (characterizing charge fluctuations) are

defined as

χ̃ij ≡ −i2e
2

~
θ(tij)〈[: n̂iiI (t1) :, : n̂jjI (tj) :]〉0 = 4e2~ Im[G̃Rij G̃

<
ji] , (B.65a)

η̃ij ≡
e2

2~
〈{: n̂iiI (ti) :, : n̂jjI (tj) :}〉0 = −e2~ Re[G̃>ij G̃

<
ji] , (B.65b)

with equal spins, σi = σj (for σi 6= σj , both these quantities vanish). [Eqs. (B.65)

correspond to (GZ-II.31) and (GZ-II.32).] The right-most equalities were obtained

by using Wick’s theorem to rewrite the correlators in terms of the single-particle

Green’s functions G̃〈,〉 [Eqs. (B.46)]. The Fourier transforms of χ̃ij and η̃ij satisfy

χ̄∗
−k(−ω) = χ̄k(ω) = χ̄−k(ω) and η̄−k(−ω) = η̄k(ω) (thus the latter is real), and

are related by the fluctuation dissipation theorem [(GZ-II.33)]:

η̄k(ω) = −1

2
coth(~ω/2T )Im χ̄k(ω) . (B.66)

Now, if we write the second-order contribution iS
(2)
V (t, t0) in the form of

Eq. (B.61b), and Fourier transform,i we obtain from Eqs. (B.28b) and (B.64):

V · Ã · V =

∫
dkdω

(2π)d+1

∑

αα′

V̄α,−k(−ω)Āαα′

k (ω)V̄α′,k(ω) , (B.67a)

Āαα′

k (ω) = −i




0
ε̄−k(−ω)

V̄ int(k)

ε̄k(ω)

V̄ int(k)
2iη̄k(ω)




αα′

, (B.67b)

iStrictly speaking the Fourier transform (B.67a) is an exact representation of V · Ã · V only if the
time integrals in Eq. (B.61b) are unbounded, e.g., for t0 = −∞ and t1 = ∞. In our formalism,
this indeed is the case, since we do take the limit t0 → −∞, and may also take t1 → +∞ (because
the t1-dependence drops out, anyway).
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where ε̄k(ω) ≡ 1 − V̄ int(k) χ̄k(ω) is the dielectric susceptibility. [The latter rela-

tion is a generalized version of (GZ-II.35); in (GZ-II.36), GZ added to ε̄k(ω) an

electron-phonon contribution, which is not important for the present discussion

and neglected by GZ themselves later on, after (GZ-II.75).]

Having found Ā, let us now also find and discuss some useful properties of its

inverse, Ā−1 [it will be needed in the next section after evaluating the functional

integral Eq. (B.62)]. Using ε̄−k(−ω) = ε̄∗k(ω), we find

(Ā−1)αα
′

k (ω) =

(
Īk(ω) iR̄k(ω)

iR̄−k(−ω) 0

)
, (B.68)

with matrix elements given by

R̄k(ω) =
V̄ int(k)

ε̄k(ω)
, (B.69a)

Īk(ω) =
2η̄k(ω)|V̄ int(k)|2

|ε̄k(ω)|2 = − coth(~ω/2T )Im R̄k(ω) , (B.69b)

where the last equality in Eq. (B.69b) follows from Eq. (B.66). Note that the as-

sumptions [stated before Eq. (B.14)] that V̄ int(k) is real and symmetric, imply

that

R̄∗
−k(−ω) = R̄k(ω) = R̄−k(ω) ,

Ī∗−k(−ω) = Īk(ω) = Ī−k(ω) = Īk(−ω) ,

(B.70)

so that the functions R̃ij and Ĩij are both purely real: R̃ij = R̃∗
ij and Ĩij = Ĩ∗ij =

Ĩji. For reference purposes, we note also that their frequency Fourier transforms,

denoted by R̃ij(ω) and Ĩij(ω), satisfy the relations R̃ij(ω) = R̃ji(ω) = R̃∗
ij(−ω) and

Ĩij(ω) = Ĩji(ω) = Ĩ∗ij(−ω) = Ĩij(−ω) = − coth(~ω/2T )Im[R̃ij(ω)] . (B.71)

Furthermore, R̃ij(ω) is analytic in the upper half plane, implying that R̃ij is pro-

portional to θ(tij). In contrast, Ĩij is symmetric in its indices and thus nonzero for

both tij > 0 and < 0.

The components of Ã−1 are of course related to field correlation functions of

the type 〈VαiVα′j〉V,ns, as follows from a simple exercise in Gaussian integration:

Introducing the generating functional

Q[ζ] ≡ 〈e− i
~
ζ·V〉V,ns , (B.72a)

[ζ · V ](t1, t0) ≡
∫ t1

t0

dt3

∫
dr3

∑

α=±

ζα3Vα3 , (B.72b)
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where ζαi = ζα(ti, ri), with α = ±1, are two real source fields, we find

Q[ζ]
RPA−−−−→

∫
DV+

∫
DV−e−

1
2~

V·Ã·Ve−
i
~
ζ·V

∫
DV+

∫
DV−e−

1
2~

V·Ã·V
= e−

1
2~
ζ·Ã−1·ζ . (B.73)

The field correlators are then easily found to have the form

1

~
〈VαiVα′j〉V,ns = −~

δ2Q[ζ]

δζαiδζα′j

∣∣∣∣
ζ=0

= (Ã−1)αα
′

ij =

(
Ĩij iR̃ij

iR̃ji 0

)

αα′

(B.74a)

= − i

e2




1

2
L̃Kij L̃Rij

LAij 0




αα′

. (B.74b)

where Eq. (B.68) has been used, and the functions [cf. (GZ-II.56) and

(GZ-II.57)]

(R̃/Ĩ)ij =

∫
(dk)(dω)e−iω(ti−tj)+ik·(ri−rj)(R̄/Ī)k(ω) (B.75)

are defined via their Fourier transforms, given by Eqs. (B.69a) and (B.69b) above.

Equation (B.74b) expresses the general fact [reviewed in Appendix E.2] that the

field correlators can also be written in terms of the standard retarded, advanced

and Keldysh components of the interaction propagator, L̃Rij , L̃Aij and L̃Kij , implying

that these are proportional to R̃ij , R̃ji and Ĩij [cf. (GZ-III.A14)]. This implies that

R̃ij is a retarded propagator and thereby confirms that it is proportional to θ(tij)

[as had already been concluded above from the analytic properties of R̃ij(ω)].

To obtain explicit expressions for R̄k(ω), one needs ε̄k(ω) and hence χ̄k(ω), for

which one has to calculate a polarization bubble [see Appendix F, Fig. F.1(e)]. If

V̄ int(k) = 4π/k2 represents the unscreened Coulomb interaction [Eq. (B.14) with

λ0 = 0] and, as is usually the case in the presence of disorder, only small frequencies

and wave numbers are of interest, a standard calculation yields [cf. Eq. (F.5e) and

(GZ-II.36)]:

χ̄k(ω) = − k
2σDrude

DC

Dk2 − iω
, ε̄k(ω) = 1 +

4πσDrude
DC

Dk2 − iω
, R̄k(ω) =

Dk2 − iω

e22νDk2 . (B.76)

B.5.7. Approximating ρ̃
(ns)
ij by ρ̃0

ij

Even after having made the RPA approximation, the functional integral in

Eq. (B.62) over all field configurations of Vα is not yet Gaussian. The reason is

that the term B′ · V in the exponent depends, via w̃a−, on the full, interacting

density matrix ρ̃
(ns)
ij (t′), which depends on the fields Vα too, in a highly nontriv-

ial way. To make further progress, we shall ultimately have to neglect the effect
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of interactions on the single-particle density matrix, by replacing ρ̃
(ns)
ij (t′) by its

noninteracting (and hence time-independent) version ρ̃0
ij :

ρ̃
(ns)
ij (t′)

approx−−−−→ ρ̃0
ij ≡ 〈n̂ijS〉0 . (B.77)

GZ use this approximation at two points in their calculation [see the comment after

(GZ-II.43)]: (GZi) to simplify the propagators Ũaij , namely when passing from (GZ-

II.40) to (GZ-II.43); and (GZii) to simplify the thermal weighting factor describing

the initial distribution of electrons, namely to obtain the explicit factor ρ0 in (GZ-

II.49). In our formalism, (GZii) would correspond to setting t0 → t2, i.e., making the

replacement ρ̃
(ns)

22̄′
(t2, t0) → ρ0

22̄′
in Eq. (B.50a) for J̃V12′,22̄′,2̄1′

(t1, t2; t0) and inserting

the result into Eq. (B.52), since this would reproduce (GZ-II.49).

We shall use similar but weaker approximations, and proceed in two separate

steps:

(i) We “linearize” the exponential factor B̃ · V in Eq. (B.62) by making the

replacement B̃[ρ̃
(ns)
ij ] → B̃[ρ̃0

ij ], so that the functional integral (B.62) becomes truly

Gaussian in V and can readily be performed [see Sec. B.5.8]. We thereby neglect

the effect of interactions on all occurences (via w̃a− in h̃aV ) of ρ̃(ns) in the propaga-

tors Ũaij , the rationale being that in order to calculate the decoherence rate, we are

interested in how the interaction affects the time-evolved propagation of electrons

along time-reversed paths, and not how it modifies equal-time objects like ρ̃ij . Dia-

grammatically, this corresponds to neglecting diagrams which modify the Keldysh

Green’s function without affecting the retarded or advanced ones, i.e., which modify

only the tanh factor, but not the propagator Ũij in Eq. (B.47b).

(ii) For the propagator J (ã), which is defined as the sum of all terms for which

the current vertex j22′ occurs on contour ã at time t2ã , we neglect all interaction

vertices that occur on the same contour ã at earlier times t3ã or t4ã ∈ [t0, t2ã ].

Thus, in the second lines of Eqs. (B.51a) and (B.51b), we make the replacements

Ũ ′F
20 → Ũ0

20 and Ũ ′B
0̄2′

→ U0
0̄2′

. However, for the opposite contour containing no

current vertex, we include interaction vertices for all times ∈ [t0, t1]. The rationale

for this is that, in diagrammatic language, this approximation retains only those

diagrams for which both current vertices ĵ22′ and ĵ11′ are always sandwiched be-

tween a G̃R- and a G̃A-function, i.e., G̃Rj G̃A. These are the ones relevant for the

Cooperon; the contributions thereby neglected correspond to the so-called “inter-

action corrections”, which feature at least on current vertex sandwiched between

two retarded or advanced functions, i.e., G̃RĵG̃R or G̃AĵG̃A.

Note that this approximation (ii) is much weaker than (GZii): we do not re-

place ρ̃
(ns)

22̄′
by ρ̃0

22̄′
in Eq. (B.50a) (i.e., we do not set t0 → t2), but instead use

ρ̃
(ns)

22̄′
(t2, t0) = ŨF20ρ̃

0
00̄Ũ

B
0̄2̄′

[Eq. (B.43a)] and send t0 → −∞. Also, we wish to em-

phasize that “interaction correction” terms can be calculated from our formalism if

one so chooses, by avoiding our approximation (ii) altogether and keeping track of

all interaction insertions on the entire interval [t0, t1] of both contours [Eqs. (C.10c)

and (C.10d) give examples of such contributions]. For the sake of greater generality,
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we shall thus for the moment use only approximation (i), and postpone the use of

(ii) to Sec. B.6.

B.5.8. Integrating out the fields Vα to obtain iS̃R + S̃I

The approximations discussed in the previous two subsections render the functional

integral (B.62) for F̃(t1,t0)[R
a] Gaussian. In fact, Eq. (B.62) is just of the form

(B.73), with ζ · V replaced by B̃ · V of Eq. (B.60c), so that we get

F̃(t1,t0)[R
a] = e−

1
2~

B̃·Ã−1·B̃ ≡ e−[iS̃R+S̃I ](t1,t0)/~ . (B.78)

The exponent (iS̃R+ S̃I)[R
a] ≡ B̃ ·Ã−1 · B̃/2, which is a functional of the paths Ra,

can be regarded as an “effective action” that describes the effect of interactions on

the “singled-out” electron traveling along the paths Ra. The indices R,I are meant

to distinguish terms depending on the interaction propagators R̃ and Ĩ . Before

working out the explicit form of the effective action, however, let us first collect

results to obtain path integral expressions for the correlators J̃
(F/B)
12′,21′ of Eqs. (B.51).

These contain the correlators 〈J̃V12′,22̄′,2̄1′
〉V,(ns), for which we use Eq. (B.58), with

F̃(t1,t0) given by Eq. (B.78), and
∫
dx2̄ integrals, which we perform in the same way

as for the second equalities of Eqs. (B.51):

J̃
(F/B)
12′,21′(t1, t2; t0) = ±1

~

∫
dx0F ,0̄B

ρ̃0
0F 0̄B

×






F

∫ 1F

2′

F

F

∫ 2F

0F

B

∫ 1′

B

0̄B

D̃′(R)

F

∫ 1F

0F

B

∫ 1′

B

2B

B

∫ 2′

B

0̄B

D̃′(R)






e−[iS̃R+S̃I ](t1,t0)/~|yF/B=0 .

(B.79)

Combined with the current vertex insertions
∫
dx2j22′ · j11′ of Eq. (B.54a), we

obtain
∫
dx2j22′ · j11′

∑

ã=F,B

J̃
(ã)
12′,21′(t1, t2; t0)

=

∫
dx0F ,0̄B

ρ̃0
0F 0̄B

F

∫ 1F

0F

B

∫ 1′

B

0̄B

D̃′(R)

× 1

~

{
[ĵ(t2F )ĵ(t1)e

−[iS̃R+S̃I ](t1,t0)/~]yF =0

− [ĵ(t2B )ĵ(t1)e
−[iS̃R+S̃I ](t1,t0)/~]yB=0

}
. (B.80)
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This expression, which is the first central result of our formalism, has a simple

interpretation: thermal averaging with ρ̃0
00̄ at time t0 (→ −∞) is followed by prop-

agation, in the presence of interactions (described by e−[iS̃R+S̃I ]), along all possible

paths from time t0 up to time t1, with insertions of current vertices ĵ(t2a) at time

t2 on either the upper or lower Keldysh contour, and another current vertex ĵ(t1)

at the final time.

Let us now determine the effective action explicitly, by using Eq. (B.60c) for B̃
to evaluate (1/2)B̃ · Ã−1 · B̃:

[iS̃R + S̃I ](t1, t0)[R
a]

=
1

2

∑

αα′

∫ t1

t0

dt3

∫ t1

t0

dt4

[
2θ34sF W̃

Fα
3F 3̄F

(Ã−1)αα
′

3̄F 4̄F
sF W̃

Fα′

4F 4̄F

+ sBW̃
Bα
3̄B3B

(Ã−1)αα
′

3̄B 4̄F
sF W̃

Fα′

4F 4̄F
+ sF W̃

Fα
3F 3̄F

(Ã−1)αα
′

3̄F 4̄B
sBW̃

Bα′

4̄B4B

+ 2θ34sBW̃
Bα
3̄B3B

(Ã−1)αα
′

3̄B 4̄B
sBW̃

Bα′

4̄B4B

]
. (B.81)

There are now two somewhat different routes to proceed, which lead to two some-

what different (but equivalent) representations for the effective action. The first,

followed in the present section, exploits symmetries under 3 ↔ 4, and writing the

effective action in terms of as few terms as possible, leads to expressions [(B.82),

(B.83), or (A.7), (A.8)] useful for recovering the Keldysh diagrammatic results for

the Cooperon self energy [(B.88) or (A.10)]. The second, summarized in Sec. B.6.3,

does not combine similar-looking terms, and is useful for establishing contact with

other, more standard influence-functional approaches.

Let us proceed with the first route. Since (Ã−1)αα
′

34 = (A−1)α
′α

43 , the integrand in

Eq. (B.81) for B̃·Ã−1·B̃ is symmetric under the exchange of variables
∑
α

∫
dt3dr3 ↔∑

α′

∫
dt4dr4. We have exploited this fact to insert a factor of 2θ34 into the first

and last terms of Eq. (B.81), which both individually have this symmetry, to obtain

time-ordered integrals for these, which has the advantage of reducing the number

of terms in subsequent expressions. (We could similarly have inserted 2θ34 into

the second and third terms of Eq. (B.81), too, but since only their sum has the

above-mentioned symmetry, this turns out to be inconvenient.)

More explicit expressions for S̃R/I can be found with the help of Eqs. (B.60d)

for W̃ aα
ij , Eq. (B.74) for Ã−1 and recalling that θ34R̃4̄3̄ = 0. Using the

shorthand (iS̃R/S̃I) to present two similar equations in one line, and writing

(iR̃/Ĩ)ı̄a ̄a′
= (iR̃/Ĩ)[tij , r

a
ı̄ (ti)−ra

′

̄ (tj)], where tij = ti−tj [and likewise for L̃R,A,Kı̄a ̄a′
],

we find:

[iS̃R/S̃I ](t1, t0)[R
a] ≡

∑

aa′

∫ t1

t0

dt3a

∫ t1

t0

dt4a′
(iL̃R/L̃I)3a4a′

[Ra] , (B.82)

−(iL̃R/L̃I)3F 4F = −θ34sF sF W̃F+
3F 3̄F

W̃F∓
4F 4̄F

(iR̃/Ĩ)3̄F 4̄F

=
1

2
iδ̃3F 3̄F

{
[δ̃ − (θ42 + yF θ24)2ρ̃

0]4F 4̄F

θ34δ̃4F 4̄F

}
L̃R/K

3̄F 4̄F
, (B.83a)
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−(iL̃R/L̃I)3B4F = −1

2
sBsF W̃

F∓
4F 4̄F

(2iR̃/Ĩ)3̄B 4̄F
W̃B+

3̄B3B

= −1

2
i





[δ̃ − (θ42 + yF θ24)2ρ̃
0]4F 4̄F

1

2
δ̃4F 4̄F





L̃R/K
3̄B 4̄F

δ̃3̄B3B
, (B.83b)

−(iL̃R/L̃I)3F 4B = −1

2
sF sBW̃

F+
3F 3̄F

(2iR̃/Ĩ)3̄F 4̄B
W̃B∓

4̄B4B

= ± 1

2
iδ̃3F 3̄F

L̃A/K
4̄B 3̄F





[δ̃ − (θ42 + yBθ24)2ρ̃
0]4̄B4B

1

2
δ̃4̄B4B




, (B.83c)

−(iL̃R/L̃I)3B4B = −θ34sBsB(iR̃/Ĩ)3̄B 4̄B
W̃B+

3̄B3B
W̃B∓

4̄B4B

= ∓ 1

2
iL̃A/K

4̄B 3̄B
δ̃3̄B3B

{
[δ̃ − (θ42 + yBθ24)2ρ̃

0]4̄B4B

θ34δ̃4̄B4B

}
. (B.83d)

The δ̃ı̄i functions in the second lines of Eq. (B.83) will remove one of the coordinate

integrations
∫
dxı̄,i that are contained in the path integral

∫
D̃′(R). The second and

third terms of Eq. (B.81) are equal, as can be seen by setting 3 ↔ 4 and α ↔ α′ in

the third and recalling that (Ã−1)α
′α

43 = (Ã−1)αα
′

34 ; we exploited this property above

to combine those contributions from these terms that are proportional to R̃3̄B 4̄F
[or

R̃3̄F 4̄B
] together into Eq. (B.83b) [or Eq. (B.83c)], hence the factors of 2R̃ in these

equations.

Note that if we make approximation (ii) of Sec. B.5.7, a useful simplification

occurs [which was exploited in Appendix A to obtain Eqs. (A.8) from Eqs. (B.83)]:

all the factors (θ4a′2+ya
′

θ24a′
) above then reducej to 1, because ya

′ 6= 1 was needed

only to deal with interaction vertices occuring at times t4a′
earlier than a current

vertex on the same contour a′, and these are precisely the ones that are dropped

under approximation (ii).

Equations (B.83) for the effective action (iS̃I+S̃R) constitute the second central

result of this section. It should be emphasized that in the path integral (B.80), the

Pauli principle is fully accounted for by the Pauli factors (δ̃−2ρ̃) in S̃R. The ability

jTo see this explicitly, we argue as follows, discussing in parallel the cases of J̃(ã=F/B), having
a current vertex on the upper/lower contour and for which we have decided to use yã=F/B = 0:
if an interaction vertex lies on the same contour as the current vertex, i.e., for J̃(ã=F/B) on the
upper/lower contour at time t4F/B

(hence a′ = F/B), approximation (ii) says that it must lie at

greater times than the current vertex, t4F/B
> t2F/B

, implying that (θ4F/B2 +yF/Bθ24F/B
) = 1.

If instead the interaction vertex lies on the opposite contour than the current vertex, i.e., for
J̃(a=F/B) on the lower/upper contour at time t4B/F

(hence a′ = B/F ), the fact that yF +yB = 1

(always) and that we chose yã=F/B = 0, implying yB/F = 1, also gives (θ4B/F 2+yB/F θ24B/F
) =

1, independent of the value of t4B/F
.
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to incorporate the Pauli principle into an influence functional for interacting elec-

trons may be regarded as one of the main achievements of the formalism developed

so far.

This concludes our rederivation of GZ’s influence functional. In the remaining

section B.6, where we show how it is related to diagrammatic Keldysh perturbation

theory, and in the main text, where we use it to calculate the decoherence rate γϕ,

our analysis differs significantly from GZ’s, since we come to different conclusions.

Let us just mention here one such difference: according to the first lines of

Eqs. (B.83), iS̃R and S̃I are, respectively, purely imaginary or purely real functionals

of the paths Ra, since W̃ aα, R̃ij and Ĩij are all purely real functions. GZ have used

this fact to argue that after averaging e−(iS̃R+S̃I)hbar over all paths [as required

by the path integrals in Eq. (B.79)], e−S̃I/~ will produce an exponentially decaying

function of time and thereby determine the interaction-induced decoherence rate,

whereas e−iS̃R/~ will just produce an oscillating time dependence, and hence, quite

generally, cannot contribute to decoherence; in particular, they argued that “iS̃R
can never cancel any contribution from S̃I” [discussion before (GZ-III.22)]. This

general argument would work if the measure used in the path integral were real;

however, it does not apply to the present case of Eq. (B.79), where the measure

e±iS
F/B
0 /~ is complex, since the average of a purely oscillatory function, using a

complex measure, can well contain a decaying component, too. Indeed, it is shown

in the main text [end of Sec. 4] that contributions from iS̃R and S̃I do partially

cancel each other.

B.6. Influence functional versus Keldysh diagrammatics

To check the general formalism developed above, it is important and instructive to

verify that it can reproduce the standard results of diagrammatic Keldysh pertur-

bation theory, before disorder averaging. We shall do this by expanding the path

integrals (B.79) in powers of the effective action (iS̃R + S̃I):

F

∫ 1F

0F

B

∫ 1′

B

0̄B

D̃′(R)e−(iS̃R+S̃I )/~ =
∞∑

N=0

1

N !
F

∫ 1F

0F

B

∫ 1′

B

0̄B

D̃′(R)

×
[
−1

~

∑

aa′

∫ t1

t0

dt3a

∫ t1

t0

dt4a′
[iL̃R3a4a′

+ L̃I3a4a′
]

]N
.

(B.84)

Now and henceforth using approximation (ii) of Sec. B.5.7, we shall use this ex-

pansion to reproduce the Keldysh expressions for the conductivity in first order

perturbation theory [Eqs. (B.85)], and to obtain general expressions for the first or-

der contributions to the Cooperon before disorder averaging [Eqs. (B.88)], thereby

reproducing the familiar Keldysh diagrams for the Cooperon self energy [Fig. A.1

of App. A].
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Fig. B.2. Feynman diagrams for the first-order correlators J̃
′(R/I)
aa′

of Eq. (B.85), and for the

vertices of Eqs. (B.91).

B.6.1. First order terms and cooperon self energy Σ̃R/I

The N = 1 terms of Eq. (B.84) can be used to obtain the first order con-

tributions, J̃
′(1)
12′,21′(0), to the correlators needed for σDC,real [Eq. (B.54a)]. This

straightforward, if tedious, excercise is discussed in Appendix C.3. The result can

be written as J̃
′(1)
12′,21′(0) =

∫
(dε)J̃

′(1)ε
12′,21′ , where [see Fig. B.2]

J̃
′(1)ε
12′,21′ = [−n′

0(~ε)]

(
−1

2
i~3

)∫
(dω̄)

∑

aa′

[J̃
′(R)
aa′ + J̃

′(I)
aa′ ] , (B.85a)

J̃
′(R/I)
FF = G̃R13(ε)G̃

K/R
34 (ε− ω̄)G̃R42′ (ε)G̃A21′(ε)(L̃R/L̃K)34(ω̄) , (B.85b)

J̃
′(R/I)
BF = G̃

K/R
14 (ε− ω̄)G̃R42′(ε)G̃A23(ε)G̃

A
31′(ε− ω̄)

(
L̃R
/

1

2
L̃K
)

34

(ω̄) , (B.85c)

J̃
′(R/I)
FB = G̃R13(ε− ω̄)G̃R32′(ε)G̃A24(ε)G̃

K/A
41′ (ε− ω̄)

(
L̃A
/

1

2
L̃K
)

43

(ω̄) , (B.85d)

J̃
′(R/I)
BB = G̃R12′(ε)G̃A24(ε)G̃

K/A
43 (ε− ω̄)G̃A31′(ε)(L̃A/L̃K)43(ω̄) , (B.85e)

where J̃
′(R/I)
aa′ denotes a first-order contribution from (iS̃R/S̃I), with interaction

vertices that lie on contours a and a′. These expressions agree with those of standard

diagrammatic Keldysh perturbation theory. Thus, the basic building blocks of the

influence functional approach, including its treatment of the Pauli principle, have

survived their first test.

Next, we shall derive a general expression for the self energy of the Cooperon

propagator. Usually, the Cooperon self energy is defined, after Fourier transforming

to momentum space and disorder averaging, by a Dyson equation of the form C̄q =

C̄0
q+ C̄0

qΣqC̄q, where C̄0
q, the free Cooperon in the absence of interactions, is the con-

tribution to 〈G̃RG̃A〉dis of time-reversed paths [cf. Eq. (F.3b)]. To identify a similar

structure in position space and before disorder averaging, we need to write the first

order (N = 1) term of Eq. (B.84) in the form ŨFB ·Σ̃ ·ŨFB , i.e., a self-energy insertion

sandwiched by two forward-backward propagators (ŨFB )ı̄F jFjB ı̄B
≡ Ũ0F,̄ıF jF Ũ0B

jB ı̄B
=

~
2G̃R,̄ıF jF G̃AjB ı̄B (each of which will produce a Cooperon upon disorder
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averaging):

−1

~
F

∫ ı̄F

jF

B

∫ iB

̄B

D̃′(R)(iL̃R/L̃I)aa′(t3, t4) =
(
ŨFB · Σ̃R/Iaa′ · ŨFB

)ı̄F jF
̄BiB

(B.86a)

=

∫
dx3F dx4̄B

∫
dx4̄F

dx3B (ŨFB )ı̄F 3F

̄B 4̄B

(
Σ̃
R/I
aa′

)3F 4̄F

4̄B3B
(ŨFB )4̄F jF

3B iB
. (B.86b)

(For ease of recognition, we here and henceforth in this section write indices asso-

ciated with the forward (F ) or backward (B) paths as superscripts or subscripts,

respectively). As made explicit by Eq. (B.86b), the first (or second) dot product on

the right-hand side of Eq. (B.86a) indicates integration over the two coordinates

associated with the two “outgoing” (or the two “incoming”) vertices at the cor-

ners of the self-energy box [see Fig. A.1a]. Now, the left-hand side of Eq. (B.86a)

contains two vertices, associated with the indices of (iL̃R/L̃I)3a4a′
[Eqs. (B.83)],

as insertions into a double path integral, and therefore contains four Green’s func-

tions G̃ [cf. the rule of thumb (D.10) of Appendix D.3]; however, for ŨFB · Σ̃ · ŨFB , we

formally need six Green’s functions G̃ and four vertices, one for each corner of the

self-energy box. To achieve this, we proceed as follows: the two corners to which

the interaction lines are connected [black dots in Fig. A.1] can be naturally labelled

by a and a′, which take the values F/B, according to the contour that the corner

sits on; let ā and ā′ similarly label the other two, “free” corners [empty circles in

Fig. A.1]. For the free corner ā (and similarly for ā′), we use the identity (tk is an

arbitrary time between ti and tj)

G̃
R/A
iājā

= (sāih)

∫
dxkā ,k̄ā

G̃
R/A
iākā

δ̃kāk̄ā
G̃
R/A

k̄ājā
, (B.87)

taking R/A and sā = ±1 if ā = F/B, to write one Green’s function as the con-

volution of two, and regard the δ̃ā function as the “vertex” at the corresponding

free corner of the self energy box.k In this way, the self-energy contributions Σ̃
R/I
aa′

are found to be given by the first lines of the following equations (summarized

diagrammatically in Fig. A.1):

(
Σ̃
R/I
FF

)3F 4̄F

4̄B3B
= θ34

(
W̃F+δ̃B · ŨFB · δ̃BW̃F∓

)3F 4̄F

4̄B3B

1

~
(iR̃/Ĩ)3F 4̄F

= − i~
2

(G̃K/R)3F 4̄F G̃A4̄B3B
(L̃R/L̃K)3F 4̄F , (B.88a)

(
Σ̃
R/I
BF

)3F 4̄F

4̄B3B
=
(
δ̃F δ̃B · ŨFB · W̃B+W̃

F∓
)3F 4̄F

4̄B3B

1

~
(iR̃/Ĩ)3B

4̄F

= − i~
2

(G̃K/R)3F 4̄F G̃A4̄B3B

(
L̃R
/

1

2
L̃K
)

3B

4̄F , (B.88b)

kBy using Eq. (B.87) twice at the two free corners, an extra overall phase factor of (isā)(isā′) =
−sasa′ is generated. The latter cancels the overall phase factor (−sasa′) occuring in the first
lines of Eqs. (B.82) for −(iL̃R/L̃I), which is why this factor does not occur in the first lines of
Eqs. (B.88).
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(
Σ̃
R/I
FB

)3F 4̄F

4̄B3B
=
(
W̃F+W̃B∓ · ŨFB · δ̃B δ̃F

)3F 4̄F

4̄B3B

1

~
(iR̃/Ĩ)3F

4̄B

= − i~
2
G̃R,3F 4̄F (G̃K/A)4̄B3B

(
L̃A
/

1

2
L̃K
)3F

4̄B
, (B.88c)

(
Σ̃
R/I
BB

)3F 4̄F

4̄B3B
= θ34

(
δ̃F W̃B∓ · ŨFB · W̃B+δ̃

F
)3F 4̄F

4̄B3B

1

~
(iR̃/Ĩ)3B 4̄F

= − i~
2
G̃R,3F 4̄F (G̃K/A)4̄B3B

(L̃A/L̃K)4̄B3B
. (B.88d)

To obtain the second lines of Eqs. (B.88) from the respective first lines, we proceed

similarly as for Eqs. (B.83) [but now with θ42 + ya
′

θ24 = 1, since we use approx-

imation (ii), as explained in the paragraph after Eqs. (B.83)]. In particular, we

exploit the fact that the time-integrals in a path integral are time-ordered for the

upper contour and anti-time-ordered for the lower contour to replace Ũ0F by i~G̃R

and Ũ0B by −i~G̃A [cf. Eq. (B.46)], or, if they are pre- or post-contracted with

(δ̃−2ρ̃0), by i~G̃K [Eqs. (B.47b)]. For example, to obtain Eqs. (B.88a) and (B.88d)

for Σ̃RFF/BB , we used:

(
W̃F+δ̃B · ŨFB · δ̃BW̃F−

)3F 4̄F

4̄B3B

=

∫
dx3̄F

dx4B

∫
dx4F dx3̄B

δ̃3F 3̄F δ̃4̄B4B

× Ũ0F,3̄F 4F Ũ0B
4B 3̄B

δ̃3̄B3B

1

2
sF (1 − 2ρ̃0)

4F 4̄F (B.89a)

= +
1

2
(i~G̃K,3F 4̄F )(−i~G̃A4̄B3B

) , (B.89b)

(
δ̃F W̃B− · ŨFB · W̃B+δ̃F

)3F 4̄F

4̄B3B

=

∫
dx3̄F

dx4B

∫
dx4F dx3̄B

δ̃3F 3̄F

× 1

2
sB(1 − 2ρ̃0)4̄B4B

Ũ0F,3̄F 4F Ũ0B
4B 3̄B

δ̃3̄B3B
δ̃4F 4̄F (B.89c)

= −1

2
(i~G̃R,3F 4̄F )(i~G̃K4̄B3B

) . (B.89d)

Satisfactorily, the second lines of Eqs. (B.88), summarized diagrammatically in

Fig. A.1, are identical to what one obtains from Keldysh perturbation theory, as

can easily be verified starting from Eq. (E.24) of Appendix E.3. Moreover, they are

evidently consistent with the first order results listed in Eqs. (B.85) above. (In fact,

the latter could have been used to guess Eqs. (B.88); the reason for nevertheless

going through the above analysis was to check that the signs can be organized in

a manner that allows for a series to be summed up.) In Sec. F.2, we shall calculate
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the Cooperon self-energy explicitly by starting from Eqs. (B.86b) and (B.88) and

performing the disorder averaging diagrammatically.

B.6.2. Fate of the Pauli factor (δ̃ − 2ρ̃0)

One instructive outcome of the analysis of the previous section is that we have

learnt quite generally how to deal with the Pauli factors (δ̃ − 2ρ̃0) occuring in S̃R:

all Keldysh functions in Eqs. (B.85) and (B.88) arose from exploiting the identities

Ũ0
iı̄(δ̃ − 2ρ̃0)ı̄j = (δ̃ − 2ρ̃0)iı̄Ũ

0
ı̄j = i~G̃Kij [Eq. (B.47b)]. Since its frequency Fourier

transform obeys [Eq. (B.47b)] G̃Kij (ε) = [1−2n0(~ε)][G̃
R
ij−GAij ](ε), and in Eqs. (B.85)

and (B.88) all Keldysh functions come in the combination G̃K(ε− ω̄)L̃R/A(ω̄), we

can deduce a rule of thumb: by transforming to the coordinate-frequency represen-

tation, one generates the replacement

(δ̃ − 2ρ̃0)L̃R/A → tanh

[
~(ε− ω̄)

2T

]
L̃R/A(ω̄) . (B.90)

Actually, in deriving the general structure of the self-energy above [Eq. (B.88)],

this replacement has, in effect, already been deduced directly, and to all orders

in the interaction, from the general form of iL̃Raa′ in Eqs. (B.83), by exploiting

the fact that in the path integral, each L̃Raa′ is sandwiched between propagators

Ũ0. Since this point is so important, let us spell it out once more: depending on

whether a vertex at time t4′

a
sits on the forward (time-ordered) or backward (anti-

time-ordered) contour (a′ = F/B), the factor (δ̃ − 2ρ̃0)L̃R/A occuring in L̃Raa′ is

sandwiched as follows between two G̃R · · · G̃R or G̃A · · · G̃A functions [see bottom

two diagrams of Fig. B.2]:
[
G̃RiF 4F

(δ̃ − 2ρ̃0)4F 4̄F

]
L̃R34̄F

G̃R4̄F jF
→ G̃KiF 4̄F

(ε̄− ω̄)L̃R34̄F
(ω̄)G̃R4̄F jF

(ε̄) , (B.91a)

G̃A̄B 4̄B
L̃A4̄B3

[
(δ̃ − 2ρ̃0)4̄B4B

G̃A4B ı̄B

]
→ −G̃A̄B 4̄B

(ε̄)L̃A4̄B3(ω̄)G̃K4̄B ı̄B
(ε̄− ω̄) . (B.91b)

Here the left- and right-hand sides are written in the time and frequency domains,

respectively, and the replacement rule (B.90) follows from Eqs. (B.91) since G̃K(ε̄−
ω̄) contains a factor tanh[~(ε̄−ω̄)/2T ]. To be very explicit, the arrows in Eqs. (B.91)

are shorthands for the following series of manipulations on the above factors of

G̃RiF 4F
(δ̃ − 2ρ̃0)4F 4̄F

or (δ̃ − 2ρ̃0)4̄B4B
G̃A4B ı̄B occuring on the forward or backward

contours [indices are now dropped, for brevity]:

G̃R(δ̃ − 2ρ̃0) = [G̃R −GA](δ̃ − 2ρ̃0) = G̃K
(1)→ [G̃R − G̃A] tanh

(2)→ G̃R tanh ,

(δ̃ − 2ρ̃0)G̃A = (δ̃ − 2ρ̃0)[G̃A −GR] = −G̃K (1)→ −[G̃R − G̃A] tanh
(2)→ G̃A tanh .

(B.92)

Beginning in the position-time representation on the left hand side, we exploit the

fact that the upper or lower contours are time- or anti-time-ordered to add an extra

−G̃A/R = 0 inside the square brackets, thereby obtaining a ±G̃K . Step (1) indicates
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Fourier transforming to the position-frequency domain, in which the tanh factor

becomes explicit. (Step (2) will be discussed later below.) The expressions obtained

after step (1) are the ones used to produce the right-hand sides of Eqs. (B.91);

satisfyingly, the latter are precisely the combinations produced by the Feynman

rules of diagrammatic Keldysh perturbation theory, illustrated in Fig. B.2. [As

Eqs. (B.88) show, the signs work out correctly, too, if the bookkeeping is done

sufficiently carefully]. The above argument is indeed completely general, and holds

for each vertex separately (but with different ~ε̄’s at each vertex), to all orders in

perturbation theory. Thus, we have succeeded in recovering the Feynman rules from

the influence functional approach.

In Eqs. (B.90) and (B.91), the variable ~ε̄ represents the energy of the electron

line on the upper (or lower) Keldysh contour before it enters (or after it leaves)

an interaction vertex at which its energy decreases (or increases) by ~ω̄ [see lowest

two figures in Fig. B.2]. The subtraction of ω̄ in the argument of tanh thus reflects

the physics of recoil: emitting or absorbing a photon causes the electron energy to

change by ~ω̄, and it is this changed energy ~(ε̄− ω̄) that enters the Fermi functions

for the accessible final states. (A standard back-of-the-envelope argument for the

origin of the Pauli factor, based on the availability of initial and final states, is

given in MDSA-I,22,23 Sec. V.A.) Of course, ~ε̄ will have different values from one

vertex to the next, reflecting the history of energy changes of an electron line as it

proceeds through a Feynman diagram.

The final step (2) in Eqs. (B.92) [not contained in Eq. (B.91)] indicates an

approximation that occurs if one chooses to evaluate the path integral by including

only time-reversed paths [as GZ do, see Sec. 4 of main text]: one thereby drops terms

containing interaction vertices at which G̃R changes to G̃A on the upper contour,

or G̃A changes to G̃R on the lower contour [so-called Hikami box terms], and thus

drops G̃A/R tanh terms on the upper/lower contour. Of course, this last step (2)

is optional; the Hikami terms can be retained, if one so chooses, and we do so in

Appendix F.2 when diagrammatically deriving a Dyson equation for the Cooperon

that includes the Hikami box terms. The result of that analysis is used in the main

text [Sec. 5] to calculate the decoherence rate; remarkably and unexpectedly, it turns

out that the Hikami-box contribution to the decoherence rate happens to be zero

for the special form of the interaction propagator used in the main text, namely the

unitary limit of Eq. (4a). This fact implies that, for the specific purpose of deriving

the decoherence rate (but not necessarily for other, more general quantities) from

an influence functional, we may indeed adopt step (2) and drop Hikami-box terms.

We shall do so henceforth. For the remaining terms, comparison of the very left

and right-hand sides of Eqs. (B.92) clearly shows that one really can simply replace

(δ̃ − 2ρ̃0) by tanh, without worrying about signs, etc., as specified in Eq. (B.90).

Having adopted step (2) of dropping Hikami-box terms, our rule of thumb re-

placement (B.90) can quite easily be implemented “to all orders” in the influence

functional approach: Fourier-transform the kernels (ĩL̃R/L̃I)3a4a′
[Eqs. (B.83)] of

the effective action (iS̃R+S̃I) [Eq. (B.82)], and simply make the replacement (B.90)
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in the Fourier-transformed version of iL̃R, now using the same energy ~ε̄ ≡ ~ε as

that which enters the overall weighting factor [−n′
0(~ε)]. The resulting form of the

effective action is summarized in Eqs. (2) to (4) of the main text, which serve as

the starting point of our calculation of the decoherence rate there.

Diagrammatically speaking, the procedure just proposed amounts to using the

same ε inside each tanh[~(ε− ω̄)/2T ]L̃R/A(ω̄). If one intends to consider only self-

energy diagrams and to treat infrared divergent frequency integrals with a self-

consistently-determined lower cutoff 1/τϕ (as GZ in fact do themselves in GZ99,3

and as discussed in detail in Secs. 4 and 5 of the main text) then this procedure

would in fact not introduce any further approximations: the energy entering and

leaving each self-energy insertion then is indeed the same for all such insertions, so

they all should have the same tanh[~(ε− ω̄)/2T ] L̃R/A(ω̄) factors.

Of course, once one includes vertex diagrams too, as needed if one wants to cure

infrared problems “properly” (as in GZ994) instead of “by hand” (as in GZ994),

then the proposed procedure of using the same ε everywhere amounts to a fur-

ther approximation, since it neglects the accumulation of energy changes that are

generated by vertex terms transferring energy between the forward and backward

contours [as illustrated by the frequencies ω̃1 and ω̃2 in Fig. B.1]. Nevertheless, the

mistake incurred by this approximation is insignificant, since the vertex terms are

not ultraviolet divergent, and the frequency transfers contained therein are limited

to the range ~|ω̄| � T , just as for self-energy terms. In fact, vertex terms become

important only in the infrared limit where ω̄ ' 1/t (as required, of course, to cure

infrared problems of the self-energy diagrams), so that we may replace ω̄ by 0 wher-

ever else it occurs in a diagram. More formally, it suffices to treat the ω̄-dependence

explicitly only for that part of a diagram where it occurs as energy transfer, while

Taylor-expanding in ω̄ all other factors of the diagram to which this ω̄-dependence

has propagated; only the zeroth-order terms of this Taylor expansion need to be

retained, since the others contain higher powers of ω̄ ∼ 1/t, and hence produce

contributions with a subleading time dependence.

Note also that the accumulation of energy transfers manisfests itself only in

diagrams of second or higher order in the interaction propagator. However, the

influence functional approach proposed by GZ and rederived here features an effec-

tive action that is linear in the interaction propagator, and hence is equivalent to

reexponentiating the first order term in the expansion of the Cooperon in powers

of the interaction propagator (as shown explicitly in DMSA-II22,23). Hence an ac-

curate treatment of effects occuring only in second or higher order is beyond the

accuracy of the influence functional approach, in both GZ’s original formulation

and the modified version proposed here. The accumulation of energy transfers is

such an effect. Fortunately, it only produces corrections that are subleading in time,

as argued above.

It is shown in the main text that if the replacement Eq. (B.90) is used in a

“nonperturbative calculation” of τϕ à la GZ, a result consistent with conventional
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wisdom is obtained. Conversely, the reason why GZ obtained a different result is

that they, in effect, omitted the −ω̄ in the tanh-function in Eq. (B.90), and hence

lost the physics of recoil, as first suspected by Eriksen and Hedegard.11

B.6.3. Alternative representation of effective action

To facilitate a comparison of the influence functional approach developed in the

present review with that of MDSA-I,22,23 it is convenient to rewrite the effective

action derived in Sec. B.5.8 and summarized in Eqs. (A.7), (A.8), in the following

form (to be compared to Eqs. (21) of MDSA-I22,23):

[iS̃R + S̃I ](t1, t0) =
1

2

∫ t1

t0

dt3

∫ t1

t0

dt4
∑

aa′=F/B

sasa′

(
−1

2
i

)
L̃aa′3a4a′

. (B.93)

In particular, the integrands are to contain nonzero contributions not only for t34 >

0 [as is the case in Eqs. (A.8)] but also for t34 < 0. To this end, we follow the second

of the routes mentioned after Eq. (B.81). We start from the latter, but instead of

exploiting any 3 ↔ 4 symmetries and inserting any factors of 2θ34, as done in

Sec. B.5.8 (“route one”), we now write out all terms explicitly, while still making

approximation (ii) of Sec. B.5.7, namely to replace all factors of (θ4a′2 + ya
′

θ24a′
)

and (θ4a′2 + ya
′

θ24a′
) by 1. [A perhaps quicker way to obtain the same results is

to start directly from Eqs. (B.82), (A.8), but to symmetrize the integrands w.r.t.

3 ↔ 4 by replacing
∑

aa′ L3a4′

a
by
∑
aa′ 1/2

[
L3a4′

a
+ L4a3a′

]
.] The result can be

written in the form of Eq. (B.93), with Laa′3a4a′
being a shorthand for the following

expressions:

L̃FF33̄,44̄ = δ̃3F 3̄F
L̃K3̄F 4̄F

δ̃4F 4̄F
+ δ̃3F 3̄F

L̃R3̄F 4̄F
[δ̃ − 2ρ̃0]4F 4̄F

+ [δ̃ − 2ρ̃0]3F 3̄F
L̃A3̄F 4̄F

δ̃4F 4̄F

L̃BF3̄3,44̄ = δ̃3̄B3B
L̃K3̄B 4̄F

δ̃4F 4̄F
+ δ̃3̄B3B

L̃R3̄B 4̄F
[δ̃ − 2ρ̃0]4F 4̄F

− [δ̃ − 2ρ̃0]3̄B3B
L̃A3̄B 4̄F

δ̃4F 4̄F

L̃FB33̄,4̄4 = δ̃3F 3̄F
L̃K3̄F 4̄B

δ̃4̄B4B
− δ̃3F 3̄F

L̃R3̄F 4̄B
[δ̃ − 2ρ̃0]4̄B4B

+ [δ̃ − 2ρ̃0]3F 3̄F
L̃A3̄F 4̄B

δ̃4̄B4B

L̃BB3̄3,4̄4 = δ̃3̄B3B
L̃K3̄B 4̄B

δ̃4̄B4B
− δ̃3̄B3B

L̃R3̄B 4̄B
[δ̃ − 2ρ̃0]4̄B4B

− [δ̃ − 2ρ̃0]3̄B3B
L̃A3̄B 4̄B

δ̃4̄B4B
.

(B.94)

[The double spatial indices, 33̄ for the forward and 3̄3 for the backward contour,

are associated with the same time t3 and are both integrated over in the path

integral (similarly for 44̄, 4̄4 and t4), see point (iii) after Eq. (B.57)]. As explained

in Sec. B.6.2, upon Fourier transforming, the Pauli factors can be converted via

Keldysh Green’s functions into tanh functions. However, we now need to use a

more general replacement rule (of which the one discussed in Sec. B.6.2 was a

special case), involving either of the expressions th∓ ≡ tanh[~(ε∓ ω̄)/2T ]. The

reason is that we now have to distinguish two types of vertices: for vertices of “type

one” [Fig. B.3(a)], the arrows of the L̃R/A and G̃K correlators that get generated

both point in the same direction (i.e. both away from or both towards the same

vertex), in which case we get the combination L̃R/A(ω̄)G̃K(ε− ω̄):
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Fig. B.3. (a) Vertices of “type one” and (b) of “type two” arising in Keldysh perturbation theory;
the accompanying Keldysh Green’s functions are G̃K(ε∓ ω̄), respectively, producing Pauli factors
tanh[(ε∓ ω̄)/2T ] that dress the associated interaction propagators L̄R

q̄ (ω̄) and L̄A
q̄ (ω̄) [Eq. (B.95)].

L̃R3̄a4̄F
[δ̃ − 2ρ̃0]4F 4̄F

→ th− L̄Rq̄ (ω̄) ,

[δ̃ − 2ρ̃0]3̄B3B
L̃A3̄B 4̄a′

→ th−L̄Aq̄ (ω̄) .

(B.95a)

For vertices of “type two” (the occurence of which was studiously avoided in

Sec. B.5.8), the arrows point in opposite directions (one toward, the other away from

the same vertex), [Fig. B.3(b)], which gives the combination L̃R/A(ω̄)G̃K(ε+ ω̄):

L̃R3̄a4̄B
[δ̃ − 2ρ̃0]4̄B4B

→ th+L̄Rq̄ (ω̄) ,

[δ̃ − 2ρ̃0]3F 3̄F
L̃A3̄F 4̄a′

→ th+ L̄Aq̄ (ω̄) .

(B.95b)

Using these replacement rules, the effective Fourier representations of Eqs. (B.94)

are readily seen to have the following forms:

L̃3a4a′
=

∫
(dω̄)(dq̄)eiq̄·[R

a(t3a )−Ra′

(t4
a′

)]e−iω̄(t3a−t4
a′

)L̄aa′q̄ (ω̄) , (B.96a)

L̄aa′q̄ (ω̄) = L̄Kq̄ (ω̄) + sa′th−sa′
L̄Rq̄ (ω̄) + sath+sa L̄Aq̄ (ω̄) . (B.96b)

Equations (B.93) and (B.96) together constitute an alternative and perhaps more

compact expression for the effective action of Eqs. (2) to (4).

Appendix C. Relation between Path Integral and Cooperon

In this appendix, we show how the general path integral expression derived for the

conductivity in the main text in terms of J̃12′,21′ [Eqs. (B.54a) and (B.79)], can

be rewritten in terms of the Drude conductivity σDrude
DC and the familiar Cooperon,

and thereby clarify how they are related to the standard relations familiar from

diagrammatic perturbation theory. We begin [Sec. C.1] by reviewing the noninter-

acting case before disorder averaging, then [Sec. C.2] recall how disorder averaging
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produces the standard result for σWL
DC . Next [Sec. C.3] we discuss the first order in-

teraction contribution and subsequently [Sec. C.4] generalize the analysis to include

interactions to all orders, before disorder averaging. In particular, we elucidate how

the average energy ~ε of the two counterpropagating trajectories is fixed in this

formalism. Finally, we perform a disorder average for the general case with inter-

actions [Sec. C.5] to establish a connection to the general Cooperon propagator in

the presence of interactions, and [Sec. C.6] review its structure in the coordinate

space representation.

C.1. Noninteracting limit before disorder averaging

Let us check that in the noninteracting limit but before disorder averaging,

Eqs. (B.54) for σDC, with J̃ ′(0) given by Eqs. (B.53) and (B.51), reproduce familiar

expressions for the conductivity σnonint
DC . If interactions are neglected, both Ũaij and

Ũ ′a
ij in Eq. (B.51) reduce to Ũ0

ij . Using Eqs. (B.45) and (B.47a) in Eqs. (B.51), one

then readily obtains

J̃
(0)
12′,21′(t1, t2; t0) =

∑

ã=F,B

J̃
(0),ã
12′,21′(t1, t2; t0) = ~G̃R12′G̃<21′ + ~G̃<12′G̃A21′ . (C.1a)

Inserting Eq. (C.1a) into Eq. (B.22a), we obtain a standard expression for σnonint
DC ,

before disorder averaging. To evaluate its real part σnonint
DC,real [Eq. (B.54a)], we have

to Fourier transform J̃ according to Eq. (B.53). Writing the result as J̃
(0)
12′,21′(ω0) =

∫
(dε)J̃

(0),ε
12′,21′(ω0), we get

J̃
(0),ε
12′,21′(ω0) = ~

[
G̃R12′(ε+)G̃<21′(ε−) + G̃<12′(ε+)G̃A21′ (ε−)

]
, (C.1b)

with ε± ≡ ε ± ω0/2. Now expand J̃ (0),ε(ω0) = J̃ (0),ε(0) + ω0J̃
′(0),ε(0), as needed

for Eq. (B.54a). Using G̃<ij (ε±) = −n0(~ε±)[G̃Rij − G̃Aij ](ε±), replacing G̃R/A(ε±)

by G̃R/A(ε), and dropping terms in J̃ ′ (0),ε(0) containing ∂εG̃
R/A(ε), since they are

smaller than those kept by a factor T/εF, we obtain

J̃
(0),ε
12′,21′(0) = −n0(~ε)~

[
G̃R12′(ε)G̃R21′(ε) − G̃A12′(ε)G̃A21′ (ε)

]
, (C.2a)

J̃
′(0),ε
12′,21′(0) = −n′

0(~ε)~
2G̃R12′(ε)G̃A21′(ε) . (C.2b)

Here n′
0(ξ) ≡ ∂ξn0(ξ), hence, in the J̃ ′(0),ε(0) correlator of Eq. (C.2b), the energy

argument ~ε is constrained to be . T . The desired result for σnonint
DC,real of Eq. (B.54a)

thus is:

σnonint
DC,real =

∑

σ1

1

d

∫
(dε)~[−n′

0(~ε)]

∫
dx2j11′ · j22′~G̃R12′(ε)G̃A21′ (ε) . (C.3)

This is a standard result; it still has to be averaged over disorder, a step that we

review in Appendix C.2.
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The J̃ (0),ε(0) correlator of Eq. (C.2a), in which the energy argument is not

constrained, turns out to cancel the (first) diamagnetic term in Eq. (B.54b), imply-

ing that σnonint
DC,imag = 0, as expected. This cancellation can be verified, even before

disorder averaging, by using an exact identity,

1

d

∫
dx2j11′ ·

[
G̃
R/A
12′ (ε)j22′G̃

R/A
21′ (ε)

]
= −e

2

m
G̃
R/A
11 (ε) , (C.4)

proven below, to rewrite the contribution from J̃ (0)(0) to Eq. (B.54b) as follows:

∑

σ1

∫
dx2j11′ · j 22′

J̃
(0)
12′,21′(0)

ω0d
=

~e2

ω0m

∑

σ1

∫
(dε)n0(~ε)

[
G̃R11(ε) − G̃A11(ε)

]

= − ~e2

ω0m

∑

σ1

∫
(dε)G<11(ε)

= −
∑

σ1

ie2〈n̂11H〉
ω0m

, (C.5)

which indeed cancels the first term of Eq. (B.54b). Since the DC conductivity is

a real quantity, the latter cancellation of the two contributions to σDC
imag, namely

the diamagnetic term and a term containing an integral
∫
dεn0(~ε) over the entire

Fermi sea, must hold order for order, to all orders, in perturbation theory in the

interaction. Therefore, we shall henceforth not keep track of these terms, and take J̃

to represent only those terms that end up containing a factor −n′
0(~ε) that restricts

ε to the vicinity of the Fermi surface, as in Eq. (C.2b) for J̃ ′(0).

It remains to prove Eq. (C.4). It follows directly from another exact identity,
∫
dxljll′

[
G̃
R/A
il′ (ε)G̃

R/A
lj (ε)

]
= − ierij

~
G̃
R/A
ij (ε) , (C.6)

which can be derived18,19 before disorder averaging by evoking gauge invariance: let

ψλ(xi) = 〈xi|λ〉 and ξλ be exact eigenfunctions and eigenvalues of the single-particle

Hamiltonian Ĥ0 [i.e., Ĥ0|λ〉 = ξλ|λ〉, cf. Eq. (B.15)], and letA be a spatially uniform

vector potential. Then the gauge-transformed wave-functions e−ieA·ri/~ψλ(xi) ≡
ψ̃λ(xi) ≡ 〈xi|λ̃〉 are eigenfunctions of the gauge-transformed Hamiltonian ˆ̃H0 ≡
Ĥ0(P̂ + eA) = Ĥ0(P̂ ) +A · ĵ + e2A2/2m, again with eigenvalue ξλ, i.e., ˆ̃H0|λ̃〉 =

ξλ|λ̃〉. Consequently, the gauge-transformed version of G̃
R/A
ij (ε) can be written in

two equivalent ways, as follows:

e−ieA·rij/~G̃
R/A
ij (ε) =

∑

λ

〈xi|λ̃〉
1

~ε− ξλ ± iα
〈λ̃|xj〉 = 〈xi|

1

~ε− ˆ̃H0 ± iα
|xj〉 .

(C.7a)

Expanding both the left- and right-hand sides to linear order inA, and representing

the latter in terms of the non-gauge transformed wave functions 〈xi|λ〉 = ψλ(xi),
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we obtain

− ieA · rij
~

G̃
R/A
ij (ε) =

∑

λ′λ

ψλ′(xi)
1

~ε− ξλ′ ± iα
〈λ′|A · ĵ|λ〉 1

~ε− ξλ ± iα
ψλ(xj) .

(C.7b)

This readily yields Eq. (C.6), since the matrix elements of the current operator are

given by 〈λ′|ĵ|λ〉 =
∫
dxljll′ [ψ

∗
λ′(xl′)ψλ(xl)].

C.2. Disorder average of noninteracting case

Evaluating the disorder average 〈G̃RG̃A〉dis needed in Eq. (C.3) is a textbook exer-

cise: introducing an extra dummy integration Vol−1
∫
dr1 into Eq. (B.54a), using

Eqs. (F.1) and (F.3) from Appendix F and performing the momentum integrals

using Eq. (F.6b), we find:

σnonint
DC =

∫
(dε)[−n′

0(~ε)]
2e2~4

dm2Vol

∑

pp′

p · p′ḠRp (ε)ḠAp′(ε)

×
[
δp,p′ +

ḠRp′(ε)ḠAp (ε)C̄0
p+p′(0)

Vol 2πντel2/~

]
(C.8a)

' σDrude
DC

[
1 − 1

πν~

∫
dε~[−n′

0(~ε)]

∫
(dq)

∫ ∞

0

dτC̃0
q(τ)

]
. (C.8b)

Here σDrude
DC = 2e2νD is the Drude conductivity and D = v2

F τel/d is the diffusion

constant. For the second term of Eq. (C.8b), we introduced the variable q = p +

p′ and set q = 0 everywhere except in C̄0
q(ω = 0), because the latter’s infrared

singularity as q → 0 dominates the
∫
(dq) integral. [Since D̄0

2p(0) from Eq. (F.3b)

has no singularities, its contribution to Eq. (C.8b) was dropped.] The
∫
dε integral

in Eq. (C.8b), which trivially equals one, is displayed here explicitly only for the

sake of comparison with later results.

The fact that the weak localization correction is small compared to the Drude

term is often made explicit by expressing the prefactor of the Cooperon term in

terms of the dimensionless conductance gd̄(L) [see Eq. (B.9), and the discussion

thereafter]: Using
∫
(dq) = ad̄−d

∫
dd̄q/(2π)d̄ for the momentum integral over the

diffusive motion, and introducing, e.g.,, the dimensionless variables u ≡ τ12/τH and

z ≡ qLH (with LH =
√
DτH) [if more convenient, e.g., in the absence of a magnetic

field, one could replace τH by τϕ here) we obtain from Eq. (C.8b) (times ad−d̄):

σnonint
d̄,DC = σd̄

[
1 − 1

gd̄(LH)

2

π

∫
dd̄z

(2π)d̄

∫ ∞

τel/τH

duC̃0
z/LH

(uτH)

]
, (C.9)

where we inserted an ultraviolet cutoff at small times, needed for d̄ = 2, 3. Appeal-

ingly, the prefactor of the Cooperon term manifestly displays the smallness of σWL
d̄

,

via the largeness of gd̄.
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C.3. First order calculation of J̃ ′

In this section, we illustrate the structure of the perturbation expansion generated

when the influence functional is expanded in powers of the effective action (iS̃R +

S̃I), as in Eq. (B.84): using approximation (ii) of Sec. B.5.7, we explicitly calculate

the first order contribution J̃
′(1)
12′,21′(0) to the correlator of Eq. (B.54a), i.e., the ω0 =

0 value of first derivative ∂ω0
of the ω0-Fourier transform of θ12J̃

(1)
12′,21′(t1, t2; t0) ≡∑

aa′ [J̃
(R)
aa′ + J̃

(I)
aa′ ]. Here J̃

(R/I)
aa′ =

∑
ã J̃

(ã,R/I)
aa′ denotes the first-order contribution

to J̃ (1) that arises from (iS̃R/S̃I) and has interaction vertices lying on contours a

and a′, while the index ã in J̃
(ã,R/I)
aa′ indicates which contour the current vertex is

located on.

Our starting point is Eq. (B.79), expanded to first order in −(iS̃R/S̃I)/~, using

Eq. (B.82):

J̃
(F,R/I)
aa′ ≡ −θ12

~2

∫
dx0F ,0̄B

ρ̃0
0F 0̄B

F

∫ 1F

2′

F

F

∫ 2F

0F

B

∫ 1′

B

0̄B

D̃′(R)

∫ t1

t0

dt3adt4a′

{
iL̃R

L̃I

}yF =0

3a4a′

J̃
(B,R/I)
aa′ ≡ θ12

~2

∫
dx0F ,0̄B

ρ̃0
0F 0̄B

F

∫ 1F

0F

B

∫ 1′

B

2B

B

∫ 2′

B

0̄B

D̃′(R)

∫ t1

t0

dt3adt4a′

{
iL̃R

L̃I

}yB=0

3a4a′

If interaction and current vertices occur on the same part (forward or backward) of

the Keldysh contour, then, depending on the relative time orderings of the vertices,

there can be more than one contribution to each of these quantities, which we shall

denote by J̃
(ãi,R/I)
aa′ , with i = 1, 2, 3, etc.

Consider J̃
(B1,R/I)
FF [see Fig. C.1(a)], which has two interaction vertices on the

forward contour at times t3 and t4 satisfying t0 < t4 < t3 < t1, and a current vertex

on the backward contour at time t2 satisfying t0 < t2 < t1 [in GZ’s approach, who

take t0 = t2, cf. Sec. B.5.7, these two sets of inequalities are replaced by a single

one instead, namely t2 < t4 < t3 < t1]. Inserting Eq. (B.83a) for (iL̃R/L̃I)3F 4F into

the first of the above equations, we obtain:

J̃
(B1,R/I)
FF = − iθ12

2~2

∫ t1

t0

dt3F

∫ t3F

t0

dt4F

∫
dx0F ,0̄B

Ũ0
1F 3F

δ3F 3̄F
Ũ0

3̄F 4F

×
{

(δ̃ − 2ρ̃0)4F 4̄F

θ34δ̃4F 4̄F

}
L̃R/K

3̄F 4̄F
× Ũ0

4̄F 0F
ρ̃0
0F 0̄B

Ũ0
0̄B2′

B
Ũ0

2B1′

B

= −1

2
i~2

∫ ∞

−∞

dt3

∫ ∞

−∞

dt4G̃
R
13G̃

K/R
34 G̃<42′G̃A21′ L̃R/K34 . (C.10a)

Here, integration over repeated spatial indices such as 0F or 0̄B or 3F is implied;

those over time are displayed explicitly, to keep track of the integration boundaries.]

Eq. (C.10a) [whose index contractions are illustrated in Fig. B.2(a)] follows from the

first line by relations such as Eqs. (B.45) and (B.47) (and dropping the subscripts
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0
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0

0 44 3

0

0 44 3 1

1’

2’2ρ

J
~

FF
(B1,R/I) J

~
FF
(F3,R/I)J

~
FF
(F1,R/I) J

~
FF
(F2,R/I)

1

1’

2 2’

1

1’
2’2ρ ρ

1

1’
ρ

22’

(a): (c): (d):(b):

Fig. C.1. Feynman diagrams for the correlators J̃
(R/I)
aa′

of Eqs. (C.10).

F,B on indices). Moreover, taking the limit t0 → −∞ [but keeping t1 fixed], the time

integrals were extended to range over [−∞,∞]. This is possible, since G̃Rij contains

a factor θij , G̃
A
ij a θji, and L̃R34 a θ34, so that the product of Green’s functions

under the time integrals automatically vanishes for time arguments lying outside the

integration ranges stipulated by the integration boundaries and θ-functions occuring

in the first line. [However, if t0 had erroneously been replaced by t2 in the first line

above, as GZ do, the second line would have integration limits
∫∞

t2
dt4F

∫∞

t4
dt3F ,

since G<42′ contains no θ42.]

The case of J̃
(Fi,R/I)
FF is similar, but since both the interaction vertices at times

t3, t4 and the current vertex at time t2 all reside on the forward contour, three

separate diagrams have to be considered [see Fig. C.1(b)–C.1(d)], corresponding

to the three possible time orderings, namely (1): t0 < t2 < t4 < t3 < t1, or (2):

t0 < t4 < t2 < t3 < t1, or (iii): t0 < t4 < t3 < t2 < t1 [since GZ implicitely take

t0 = t2, the latter two cases do not occur in their approach]:

J̃
(F1,R/I)
FF =

iθ12
2~2

∫ t1

t2

dt3F

∫ t3F

t2

dt4F

∫
dx0F ,0̄B

Ũ0
1F 3F

δ3F 3̄F
Ũ0

3̄F 4F

×
{

(δ̃ − 2ρ̃0)4F 4̄F

θ34δ̃4F 4̄F

}
L̃R/K

3̄F 4̄F
Ũ0

4̄F 2′

F
Ũ0

2F 0F
ρ̃0
0F 0̄B

Ũ0
0̄B1′

B

= −1

2
i~2

∫ ∞

−∞

dt3

∫ ∞

−∞

dt4G̃
R
13G̃

K/R
34 G̃R42′G̃<21′ L̃R/K34 . (C.10b)

J̃
(F2,R/I)
FF =

iθ12
2~2

∫ t1

t2

dt3F

∫ t2

t0

dt4F

∫
dx0F ,0̄B

Ũ0
1F 3F

δ3F 3̄F
Ũ0

3̄F 2′

F
Ũ0

2F 4F

×
{

δ̃4F 4̄F

θ34δ̃4F 4̄F

}
L̃R/K

3̄F 4̄F
Ũ0

4̄F 0F
ρ̃0
0F 0̄B

Ũ0
0̄B1′

B

= −1

2
i~2

∫ ∞

−∞

dt3

∫ ∞

−∞

dt4G̃
R
13G̃

R
32′G̃R24G̃

<
41′ L̃R/K34 , (C.10c)

J̃
(F3,R/I)
FF =

iθ12
2~2

∫ t2

t0

dt3F

∫ t2

t0

dt4F

∫
dx0F ,0̄B

Ũ0
1F 2′

F
Ũ0

2F 3F
δ3F 3̄F

Ũ0
3̄F 4F
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×
{

δ̃4F 4̄F

θ34δ̃4F 4̄F

}
L̃R/K

3̄F 4̄F
Ũ0

4̄F 0F
ρ̃0
0F 0̄B

Ũ0
0̄B1′

B

= −1

2
i~2

∫ ∞

−∞

dt3

∫ ∞

−∞

dt4G̃
R
12′G̃R23G̃

R
34G̃

<
41′ L̃R/K34 . (C.10d)

Equations (C.10b) correspond to Figs. B.2(b). The absence of a factor (δ̃− 2ρ̃0) in

the first lines of Eqs. (C.10c) and (C.10d), and the corresponding absence of a G̃K -

function in the respective second lines, reflects the fact that we took yF = 0 and

that t4 < t2 in these integrals, so that the factor (θ42 + yF θ242)2ρ̃0 in Eq. (B.83a)

for (iL̃R/L̃I)3F 4F vanishes. Equations (C.10c) and (C.10d) are examples of contri-

butions for which one or more interaction vertices occur on the same contour as the

current vertex, but at earlier times. As discussed in approximation (ii) of Sec. B.5.7,

such terms contribute to “interaction corrections” but not to decoherence, and thus

will henceforth be be excluded from our considerations.

Adding the two terms [(C.10a), (C.10b)] that survive under the said approxi-

mation (ii), we obtain J̃
(R/I)
FF =

∑
ã J̃

(ã1,R/I)
FF . The other three correlators, J̃

(R/I)
BF ,

J̃
(R/I)
FB and J̃

(R/I)
BB , can be calculated in an entirely analogous manner. The results

are:

J̃
(R/I)
FF = − 1

2 i~
2
∫∞

−∞
dt3dt4G̃

R
13G̃

K/R
34

[
G̃R42′G̃<21′ + G̃<42′G̃A21′

]
(L̃R/L̃K)34 , (C.11a)

J̃
(R/I)
BF = − 1

2 i~
2
∫∞

−∞
dt3dt4G̃

K/R
14

[
G̃R42′G̃<23 + G̃<42′G̃A23

]
G̃A31′ ,

(
L̃R
/

1
2 L̃K

)
34
, (C.11b)

J̃
(R/I)
FB = − 1

2 i~
2
∫∞

−∞ dt3dt4G̃
R
13

[
G̃R32′ G̃<24 + G̃<32′G̃A24

]
G̃
K/A
41′

(
L̃A
/

1
2 L̃K

)
43
, (C.11c)

J̃
(R/I)
BB = − 1

2 i~
2
∫∞

−∞ dt3dt4
[
G̃R12′G̃<24 + G̃<12′G̃A24

]
G̃
K/A
43 G̃A31′(L̃A/L̃K)43 . (C.11d)

Satisfactorily, these expressions agree completely with those [Eqs. (E.31)] obtained

in Appendix E.4] using diagrammatic Keldysh perturbation theory.

To obtain J̃ ′(0), we have to Fourier transform these equations w.r.t. t12, and

then calculate J
′(R/I)
aa′ (0) = [∂ω0

J
(R/I)
aa′ (ω0)]ω0=0. For example, J̃

(R/I)
FF (ω0) is given

by

J̃
(R/I)
FF (ω0) = −1

2
i~

∫
(dε)(dω̄)G̃R13(ε+)G̃

K/R
34 (ε+ − ω̄)L̃R/K34 (ω̄)

× ~
[
G̃R42′(ε+)G̃<21′(ε−) + G̃<42′(ε+)G̃A21′(ε−)

]
, (C.12)

and J̃
′(R/I)
FF (0) is easily calculated by noting that the factor in the second line of

Eq. (C.12) equals J̃
(0)
42′,21′(ω0) [cf. Eq. (C.1b)], whose first derivative is given by

Eq. (C.2b), namely J̃
′(0),ε
42′,21′(0) = −n′

0(~ε)~
2G̃R42′(ε)G̃A21′ (ε). Thus, the final result

for J̃
′(R/I)
FF (0) is

J̃
′(R/I)
FF (0) = −1

2
i~3

∫
(dε)(dω̄)[−n′

0(~ε)]G̃
R
13(ε)G̃

K/R
34 (ε− ω̄)

× G̃R42′(ε)G̃A21′(ε)L̃R/K34 (ω̄) .
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Similar expressions for the other contributions J̃
′(R/I)
aa′ (0) can be derived from

Eqs. (C.11) in an entirely analogous manner, and are given in Eq. (B.85) of Ap-

pendix B.6.2. In each case, the combination ~[G̃Ri2′ G̃<2j + G̃<i2′G̃A2j ] produces a factor

~
2[−n′

0(~ε)]G̃
R
i2′(ε)G̃A2j(ε).

Actually, it is clear from the above derivation that in every order of perturbation

theory in the interaction, such a factor will be produced for all terms that survive

the abovementioned approximation (ii): in analogy to Eqs. (C.10a) and (C.10b), it

will arise from a factor

−1

~

∫
dx0F ,0̄B

[
Ũ0
iF 0F

ρ̃0
0F 0̄B

Ũ0
0̄B2′

B
Ũ0

2BjB

−Ũ0
iF 2′

F
Ũ0

2F 0F
ρ̃0
0F 0̄B

Ũ0
0̄BjB

]
, (C.13)

where tiF and tjB are the times of the earliest interaction vertex on the upper or

lower Keldysh contour, respectively.

To conclude this section, we wish to emphasize once more the significance of the

fact, illustrated by Eqs. (C.11) but valid for all contributions to J̃ (1) (including the

“interaction corrections”), that all time integrals occuring in Keldysh perturbation

theory can be extended to range over the entire real axis. Importantly, this implies

that the Fourier transforms that are needed to obtain J̃ (1)(ω0) (and from there the

conductivity) are always given by simple convolution integrals, such as Eq. (C.12).

In contrast, in GZ’s calculations, all time integrals
∫
dt3dt4 have t2 as lower limit,

see e.g., (GZ-III.A20) and (GZ-III.A23) in GZ00,4 whose t′ corresponds to our t2.

This means that instead of obtaining simple convolution integrals, they erroneously

end up with sin and cos functions, see (GZ-III.58) and (GZ-III.61). This leads to

numerous incorrect complications and conclusions, such as the claimed existence of

an “oscillating cos-term” in (GZ-III.70). Thus, GZ’s perturbative analysis in Sec. IV

of GZ00,4 in particular their discussion of the “breakdown of the Fermi golden rule

approximation” in Sec. IV.B, is invalid, since its starting point is based on the

replacement t0 → t2, which is incorrect (and unnecessary, since the correct limit

t0 → −∞ can be incorporated into GZ’s approach, as emphasized in Sec. B.5.7 and

illustrated explicitly above).

C.4. Thermal weighting and path integral, before disorder

averaging

The presence of interactions will, in general, modify the result (C.8b) for σnonint
DC in

two ways: firstly, it can renormalize the value of σDrude
DC , but this effect is not in-

teresting for present purposes and will be ignored here. Secondly, it can reduce the

life-time of the Cooperon propagator, thereby contributing to decoherence, which is

the effect we are interested in. Our goal in this section is to express the conductivity

of Eq. (B.54a) in terms of double path integral expressions for J̃ ′
12′,21′(0), obtained

from Eq. (B.79), in a way that is generally valid in the presence of interactions,
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before disorder averaging, and properly accounts for thermal weighting via a fac-

tor [−n′
0(~ε)], as in Eq. (C.8b). Hence, we will have to find appropriate Fourier

transforms of our path integral expressions that relate them to the energy ~ε.

An important first clue comes from the first order relations (B.85) for J̃ ′
12′,21′(0):

each term contains a factor
∫

(dε)~2[−n′
0(~ε)]G̃

R
i2′ (ε)G̃A2j(ε), thus the current ver-

tex j22′ is always sandwiched between a retarded and advanced function with

energy ε, G̃Ri2′(ε)j22′G̃A2j , and thermal weighting is always governed by a factor

[−n′
0(~ε)]. As explained after in Appendix C.3 [just before Eq. (C.13)] these prop-

erties actually hold in every order of perturbation theory in the interaction, for all

terms that survive approximation (ii). Of course, the other current vertex j11′

is similarly sandwiched, too, but in general with a different energy argument,

G̃A̄1′(ε− ω̃)j11′G̃R1ı̄(ε− ω̃). The general expression for that part of the conductivity

containing the Cooperon propagator, relevant for weak localization, is by definition

the sum to all orders of all such terms containing [−n′
0]G̃

R
i2′j22′G̃A2j · · · G̃R̄1′j11′G̃A1ı̄.

In path integral language, it will thus have the following form,

σDC =
∑

σ1

1

d

∫
dx2j11′ · j 22′

∫
(dε)J̃ ′ε

12′,21′ , (C.14)

written in analogy to Eq. (B.54a) for σDC,real, where the integral equals J̃ ′
12′,21′(0),

and J̃ ′ε
12′,21′ equals [−n′

0(~ε)] times some suitable frequency Fourier transform

(needed to set the energy to ε) of a double path integral whose forward path con-

nects the points r2′ and r1, while the backward path connects r2 and r1′ . To find

the appropriate expression, we begin by considering the general double path integral

P̃ 12
43 ≡ θ12θ34F

∫ RF (tF1 )=rF
1

RF (tF2 )=rF
2

B

∫ RB(tB3 )=rB
3

RB(tB4 )=rB
4

D̃′(R)e−[iS̃R+S̃I ]/~ , (C.15)

depicted schematically in Figs. C.2(b) and C.2(c). It ranges from rF2 at time tF2 to

rF1 at time tF1 (> tF2 ) on the forward contour and from rB4 at time tB4 to rB3 at

time tB3 (> tB4 ) on the backward contour. These times are understood to be the

limits of the
∫
dta time integrals in S̃a0 and (iS̃R + S̃I), and tB4 , tB3 are in general

not equal to tF2 , tF1 , since they will have to be Fourier transformed independently

[as required, e.g.,, to properly define the variable ε in Eq. (C.14)]. For general time

arguments, we adopt the following conventions, depicted in Fig. C.2(c), for Fourier

transforming from the time to frequency domain and back:

P̃ 12
43 ≡

∫
(dE)(dΩ1)(dΩ2)(dΩ3)2πδ(Ω3)P̃12

43 (E ; Ω1,Ω2)

× exp i

{
−tF1

[
E +

Ω1 + Ω3

2

]
+ tF2

[
E +

Ω2 − Ω3

2

]

−tB4
[
E − Ω1 − Ω3

2

]
+ tB3

[
E − Ω2 + Ω3

2

]}
, (C.16a)
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Fig. C.2. (a) Diagrammatic depiction of Eqs. (C.18) for J̃ ′ε
12′,21′

or Eq. (C.29) for σWL
DC . Be-

fore disorder averaging the black box represents P̃12′

21′
(ε − 1/2ω̃;−ω̃, ω̃), thereafter it represents

C̃
ε− 1

2
ω̃

q (−ω̃, ω̃)/(2πντel
2/~). (b) Real-space depiction of a typical pair of Drude (dashed) and time-

reversed (solid) trajectories contributing to P̃ 12,Drude
43 and P̃ 12,WL

43 , corresponding to Eqs. (C.31a)
and (C.31b), respectively. (c) Definition of variables used for Fourier-transforming the double
path integral P̃ 12

43 (E , Ω1, Ω2) of Eq. (C.16a). In (c), frequency and momentum variables are cho-
sen such that Ω1 and Ω2 are, respectively, the outgoing and incoming “Cooperon frequencies”
(i.e., frequency differences between upper and lower lines); q ± p3 are the outgoing and incoming
“Cooperon momenta” (i.e., sum of momenta of upper and lower lines); E ± Ω3/2 are the average
(between upper and lower) frequencies flowing out of or into the Cooperon, respectively. The time
variables τ1,2 and τ̄1,2 and coordinate variables ρ1,2 and ρ̄1,2 are purposefully defined in such a
way [Eqs. (C.17a), (C.32)] that the Fourier exponents in Eqs. (C.16b), (C.16c) and (C.35) are free
of factors of 2. (Our labelling convention differs from that of AAK,10 which has typos involving
factors of 2.)

=

∫
(dE)(dω)(dω′)P̃12

43

(
E ;ω +

1

2
ω′, ω − 1

2
ω′

)

× e−i[τ̄12E+τ̃12ω
′+τ12ω] , (C.16b)

P̃12
43 (E ; Ω1,Ω2) =

∫
dτ1dτ2dτ̄12e

i[τ1Ω1−τ2Ω2+τ̄12E]P̃ 12
43 (τ12, τ̃12, τ̄12) . (C.16c)

(For P̃ , the indices 12
43 stand for both coordinate and time variables, for its frequency

Fourier transform P̃, distinguished from the former by using calligraphic script, they

stand for coordinate variables only; we use a similar convention for the Cooperon,

C̃ or C̃, defined below.) For Eq. (C.16b), we changed frequency variables to ω =

1/2(Ω1 + Ω2) and ω′ = Ω1 − Ω2, and introduced various sum and difference times
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[see Fig. C.2(c)]:

τ̄1 ≡ tF1 + tB4 , τ1 ≡ tF1 − tB4
2

, τ̄2 ≡ tF2 + tB3 , τ2 ≡ tF2 − tB3
2

, (C.17a)

τ12 = τ1 − τ2 , τ̄12 = τ̄1 − τ̄2 , τ̃12 =
τ1 + τ2

2
. (C.17b)

On the right-hand side of the back transformation (C.16c), P̃ 12
43 (τ12, τ̃12, τ̄12) by

definition is given by P̃ 12
43 of Eq. (C.15), with the understanding that the indices

12, 43 now only specify the path end points rF1 , r
F
2 , rB4 , r

B
3 , but that the time

arguments tF1 , tF2 , tB3 , tB4 in Eq. (C.15) are chosen such that Eqs. (C.17) hold.

The frequencies introduced in Eq. (C.16) have evident physical interpretations

[see Fig. C.2(c)]. The “Cooperon frequencies” Ω1 and Ω2 are the outgoing and

incoming frequency differences between upper and lower lines, respectively, while

E ± 1/2Ω3 are the average (between upper and lower) frequencies flowing out of or

into the Cooperon. In general, the presence of external time-dependent fields would

require Ω3, the total frequency difference between outgoing and incoming lines, to

be nonzero. However, for the present purpose of calculating the conductivity in

linear response, such external fields can be set to zero; hence in Eq. (C.16a) we use

a delta-function to set Ω3 equal to zero, thus recovering translational invariance in

time for P̃ 12
43 .

Having identified the meaning of the frequency arguments E , Ω1 and Ω2

[Fig. C.2(c)], and inspecting the frequency labels of the standard diagrammatic de-

piction [Fig. C.2(a), where an integral over the “internal” frequency ω̃ is implied] of

the current-current correlator needed for the conductivity, it becomes evident that

the average frequency is E = ε− 1/2ω̃, while the outgoing and incoming Cooperon

frequencies are Ω1 = −ω̃ and Ω2 = ω̃, respectively (i.e., ω = 0 and ω′ = −2ω̃).

Moreover, the upper line runs from r2′ to r1, while the lower line runs backwards in

time from r1′ to r2. Thus, the particular Fourier transformed version of P̃ needed

for J̃ ′ ε
12′,21′ in Eq. (C.14) is

J̃ ′ε
12′,21′ = [−n′(~ε)]

∫
(d2ω̃)P̃12′

21′

(
ε− 1

2 ω̃;−ω̃, ω̃
)
. (C.18)

To check that that the normalization factors and frequency assignments are correct,

let us expand P̃ 12′

21′ in Eq. (C.18) to zeroth and first order in the interaction in

order to calculate J̃ ′ε
12′,21′ = [J̃ ′(0),ε + J̃ ′(1)ε]12′,21′ , and compare the results to our

previously-obtained expressions for these [Eqs. (C.2b) and (B.85)]. To this end,

we begin with P̃ 12
65 , as given in Eq. (C.15) and with general indices, expand it to

first order in −[iS̃R + S̃I ]/~, and express the resulting terms in terms of G̃
K/R/A
ij

functions. The details are analogous to those presented in Sec. C.1 and C.3 to

derive J̃
(0)
12′,21′ and J̃

(1)
12′,21′ from J̃

F/B
12′,21′ of Eq. (B.79) (except that the latter’s first

line is not needed for P̃ 12
65 , and the limits of the path integrals are different). The

result can be written as P̃ 12
65 = P̃

(0)
12,65 +

∑
aa′

[
P̃

(R)
aa′ + P̃

(I)
aa′

]

12,65
, where P̃

(0)
12,65 and
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P̃
(R/I)
aa′ are given by Eqs. (C.1a) and (C.11), respectively [with (12′, 21′) → (12, 65)],

except that all occurences of the combination ~[G̃Ri2′ G̃<2j + G̃<i2′G̃A2j ] have to be

replaced by ~
2G̃Ri2G̃

A
6j . Fourier transforming the result for P̃ 12

65 [via Eq. (C.16c)] to

obtain P̃12
65 (E ; Ω1,Ω2), specifying the spatial indices as (12, 65) → (12′, 21′) and then

integrating as stipulated in Eq. (C.18), one recovers J̃ ′ε
12′,21′ = [J̃ ′(0),ε+ J̃ ′(1)ε]12′,21′ ,

with the first and second terms given by Eqs. (C.2b) and (B.85), respectively,

as expected. Thus, our check worked. [Also, the reason for the 2 in
∫
(d2ω̃) in

Eq. (C.18) becomes clear: P̃12
65 (E ; Ω1,Ω2) turns out to contain factors of 2πδ(Ω1−Ω2)

or 2πδ(Ω1 − Ω2 + · · ·) for self-energy and vertex terms, respectively, which under

the integral
∫
(d2ω̃)P̃12′

21′ (ε − 1/2ω̃;−ω̃, ω̃) of Eq. (C.18) have to collapse to unity,∫
(d 2ω̃)2πδ(· · · − 2ω̃) = 1.]

Finally, let us rewrite Eq. (C.18) in a more suggestive form. Transforming back

to the time domain using Eq. (C.16c) and writing the result in terms of the time

variables of Eq. (C.17b), we find

J̃ ′ε
12′,21′ = [−n′(~ε)]

∫ ∞

0

dτ12P̃
12′,ε
21′ (τ12) , (C.19a)

P̃ 12′,ε
21′ (τ12) =

∫ ∞

−∞

dτ̃12

∫
(d2ω̃)e−i2ω̃τ̃12

∫ ∞

−∞

dτ̄12e
iτ̄12(ε−

1
2
ω̃)

× P̃ 12′

21′ (τ12, τ̃12, τ̄12) , (C.19b)

=

∫ ∞

−∞

dτ̄12e
iτ̄12εP̃ 12′

21′ (τ12,− 1
4 τ̄12, τ̄12) . (C.19c)

We need to consider P̃ 12′

21′ only in the limit r2 → r1, since the Cooperon con-

tribution to it is negligible for |r1 − r2| & λF, where λF is the Fermi wavevector

(assumed to be much smaller than the mean free path, λF � lel). The purpose of

the time integrals in Eq. (C.19b) is to project out from the general path integral

P̃ 12′

21′ of Eq. (C.15), defined in the position-time domain, an object depending in

an appropriate way on both the average propagation time τ12 of the forward and

backward paths and the energy ε occuring in the thermal weighting factor. (The

simultaneous specification of both a time and an energy does not violate the time-

energy uncertainty relation, as incorrectly argued by GZ,26 because P̃ 12′,ε
21′ (τ12) is

constructed from two electron propagators, not one). To see how this projection

works in detail, we use Eqs. (C.17b) to write the time differences τ12, τ̃12 and τ̄12
as follows:

τ12 =
1

2

[
(tF1 − tF2 ) + (tB3 − tB4 )

]
, τ̃12 =

1

4

[
(tF1 + tF2 ) − (tB3 + tB4 )

]
,

τ̄12 = (tF1 − tF2 ) − (tB3 − tB4 ) .

(C.20)

The
∫
dτ̄12 integral in Eq. (C.19b) fixes the average energy of the upper and lower

electron lines (in diagrammatic language) to be ε − ω̃/2 [where τ̄12 is the length

difference between the forward and backward pieces of the contour]. The
∫
(dω̃)
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integral averages over all possible frequency differences ω̃ between the upper and

lower electron lines, as is necessary when vertex terms are present that transfer en-

ergy between them. And finally, the
∫
dτ̃12 integral projects out the τ̃12-dependence

of P 12′

21′ [where τ̃12 is half the difference between the midpoints of the forward and

backward pieces of the contour]. The only remaining time variable, τ12, is the av-

erage of the lengths of the forward and backward pieces, and can be viewed as the

“observation time” as a function of which P̃ 12′,ε
21′ (τ12) will decay. P̃ 12′,ε

21′ (τ12) will

contain a contribution resulting from time-reversed paths that corresponds to the

full Cooperon in the position-time representation, C̃ρ=0(τ12). The time scale on

which it decays is the desired decoherence time τϕ.

Now, the
∫
(dω̃) integral in Eq. (C.19b) yields δ(τ̃+(1/4)τ̄) [here and henceforth

we drop the subscripts on τ , τ̄ and τ̃ ], leaving us to consider a path integral with time

arguments P̃ 12′

21′ (τ,−(1/4)τ̄ , τ̄), as indicated in Eq. (C.19c). These time arguments

can be obtained by choosing, e.g., t1 = t3 = τ/2 and t2,4 = −(τ ± τ̄ )/2, resulting

in:

P̃ 12′,ε
21′ (τ) =

∫ ∞

−∞

dτ̄eiτ̄εF

∫ RF ( τ
2
)=r1

RF (− τ
2
− τ̄

2
)=r2′

B

∫ RB( τ
2
)=r1′

RB(− τ
2
+ τ̄

2
)=r2

D̃′(R)e−[iS̃R+S̃I ]/~ .

(C.21)

Equations (C.14), together with (C.19a) and (C.21), are the central results of this

section, because they express the conductivity in terms of a general path integral

influence functional, with thermal weighting taken properly into account. The main

difference to the path integral (1b) used in the main text (and by GZ) is that in

Eq. (C.21) the duration of the forward and backward paths differs by a time τ̄ that

is being integrated over in
∫
dτ̄ eiτ̄ε. The remainder of this section is devoted to

justifying the replacement of Eq. (C.21) by the simpler Eq. (1b).

The combination
∫
dε
∫
dτ̄ of integrals from Eqs. (C.14) and (C.21) have the

effect of fixing the average energy of the forward and backward trajectories to be

close to the Fermi energy, with energy spread of roughly ±T (in a way reminiscent

of Appendix B of the review24 by Chakravarty and Schmid). To see this, consider

first the noninteracting limit (i.e., ignore iS̃R + S̃I) in the semiclassical approxima-

tion, where the path integrals in Eq. (C.21) are restricted to all possible classical

forward and backward paths r
F/B
cl (t3) having the specified boundary conditions,

with corresponding classical actions S
F/B
0,cl (τ/2,−τ/2 ∓ τ̄ /2). Since these paths fol-

low diffusive trajectories through a disordered potential landscape, for any given

τ and τ̄ the path integral still includes many such classical paths, with a range of

different classical energies (and correspondingly different diffusion constants). Now,

the energy integral in Eq. (1a) restricts the
∫
dτ̄ integral in Eq. (C.21) to the range

|τ̄ | . ~/T , since
∫
dε[−n′(~ε)]eiετ̄ =

π~τ̄T

sinh(π~τ̄T )
. (C.22)

The relevant values of τ̄ are thus much smaller than the typical propagation times
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τ relevant for determining the decoherence time [τ ' τϕ ∼ ~g(Lϕ)/T � ~/T , see

Eq. (19)], so that the classical actions can be expanded24 to first order in τ̄ ,

S
F/B
0,cl

(τ
2
,−τ

2
∓ τ̄

2

)
' S

F/B
0,cl

(τ
2
,−τ

2

)
∓ 1

2
τ̄EF/Bcl , (C.23)

where EF/Bcl is the classical energy at the endpoint of the corresponding classical

path r
F/B
cl (t3). Using this in Eq. (C.21), the

∫
dτ̄ integral is seen to fix the average

classical energy of the forward and backward classical paths to be close to the Fermi

energy εF = 0, with an energy spread of order T :

∫ ∞

−∞

dτ̄
π~τ̄T

sinh(π~τ̄T )
eiτ̄

1
2
(EF

cl+EB
cl ) =

∫
dε[−n′(~ε)]δ

(
ε− 1

2
(EFcl + EBcl )

)
. (C.24)

(The right-hand side follows from using the integral representation (C.22) for the

sinh-function.) Note that the energy spread is consistent with the time-energy un-

certainty relation in the limit of present interest, τT � ~.

Now, in the absence of interactions, the only effect of fixing this average energy

ε to be roughly εF is that the velocity appearing in the diffusion constant is the

Fermi velocity, D = v2
F τel/d. However, in the presence of interactions, the energy

ε also plays a role in determining the phase space available for electrons to get

scattered upon absorbing or emitting a noise quantum. In particular, in perturbative

calculations it shows up in the tanh[~(ε ∓ ω̄)/2T ]-factors of the Keldysh electron

Green’s functions G̃K(ε∓ ω̄). In our influence functional approach this can be kept

track of by replacing Eq. (C.21) by Eq. (1b), which mimics the effect of the former’s

integral
∫
dτ̄eiετ̄ by using (i) forward and backward paths of equal duration τ and (ii)

an effective action whose time integration boundaries are fixed at ±τ/2, but which

depends explicitly on the average propagation energy ε. Note that GZ’s approach in

effect employs the same simplification, since they likewise have no
∫
dτ̄eiετ̄ integral

and use forward and backward paths of equal duration τ .

The ε-dependence of the effective action enters through the Pauli factor (δ̃−2ρ̃)

occuring in S̃R [Eqs. (A.8) or (B.94)], which we treat differently from GZ. In our

approach, it produces factors of tanh[~(ε∓ ω̄)/2T ] in the frequency representation

of S̃R [cf. Eqs. (4e) or (B.96)], chosen in such a way as to be consistent with Keldysh

perturbation theory, as discussed in Sec. 3 and (more extensively) B.6.2, B.6.3. In

GZ’s approach, the tanh-arguments contain ε instead of ε∓ ω̄ (i.e., their effective

action depends on the average energy too). However, lacking the ∓ω̄ recoil shifts,

the tanh-terms turn out to yield zero after averaging over random walks, so that

〈iS̃GZ
R 〉rw ' 0.

The strategy just described for arriving at forward and backward paths of equal

duration is of course not exact; but it is sufficiently accurate for our purposes: the

errors incurred by it are of order ~/(Tτ) (� 1 for τ ∼ τϕ), as can be shown by a de-

tailed comparison with Keldysh diagrammatic perturbation theory (Appendix B.6.2

of this review, and Appendix A.3 of DMSA-II22,23).
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C.5. General Cooperon, after disorder averaging

Let us now disorder average Eqs. (C.18), in order to arrive at an expression for σWL
DC

in terms of a general Cooperon propagator, in the presence of interactions. To this

end, we have to Fourier transform from position to wave-number variables,

P̃12
43 (E ; Ω1,Ω2) =

1

Vol2

∑

p1,p2,p3,q

δp3,0P̄E,Ω1,Ω2

q,p1,p2
exp i

{
rF1 ·

[
p1 +

q + p3

2

]

− rF2 ·
[
p2 +

q − p3

2

]
+ rB4 ·

[
−p1 +

q + p3

2

]

− rB3 ·
[
−p2 +

q − p3

2

]}
. (C.25)

as depicted in Fig. C.2(c). (Again, the δp3,0 guarantees translational invariance.) Ac-

cording to the standard diagrammatic approach for disorder averaging [cf. Fig. F.1

in Appendix F], the disorder average of P̄E,Ω1,Ω2
q,p1,p2

can be separated into a “Drude”

and a “weak-localization” contribution,

〈P̄E,Ω1,Ω2

q,p1,p2
〉dis = ~

2ḠR1
2
q+p1

(
E +

1

2
Ω1

)
ḠA1

2
q−p1

(
E − 1

2
Ω1

)

×
{

2π(Ω1 − Ω2)δp1,p2
+ ḠR1

2
q+p2

(
E +

1

2
Ω2

)
ḠA1

2
q−p2

×
(
E − 1

2
Ω2

) C̄E
q(Ω1,Ω2)

Vol 2πντel2/~

}
, (C.26)

where in the second term, the contributions from the four external electron lines

were separated and a conventional prefactor (2πντel
2/~)−1 was split off. The nor-

malization of the general Cooperon in the presence of interactions, C̄E
q(Ω1,Ω2), is

fixed by requiring that when interactions are switched off, it reduces to its free

version, C̄0
q(Ω1), according to

C̄E
q(Ω1,Ω2)

no int−−−−→ 2πδ(Ω1 − Ω2)C̄0
q(Ω1) , C̄0

q(Ω1) =
1

Dq2 − iΩ1 + γH
. (C.27)

Just as C̄0
q(Ω1), the full Cooperon C̄E

q(Ω1,Ω2) does not depend on the external

momenta p1,2, because, in diagrammtic terms, it is separated from external lines

by impurity lines.

In a purely diagrammatic approach, where one typically works exclusively in the

wavenumber-frequency domain, Eq. (C.26) would be the standard starting point for

further calculations. Since the dominant contribution to C̄E
q(Ω1,Ω2) typically comes

from small q (with qlel � 1) and small Ω1,2 (with Ω1,2τel � 1), while E is likewise

small (. T ), it is customary to neglect the terms ±q/2 and E ± Ω1,2/2 in the

arguments of the external ḠR/A functions, which simplifies the
∫
dp1,2 integrals.

To explore the effects of interactions, one would proceed to expand C̄E
q(Ω1,Ω2) in

powers of the interaction propagator, etc.
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Instead, here we shall use the general Eqs. (C.25) and (C.26) for P̃12
43 (E ; Ω1,Ω2)

to analyse the general structure of the disorder-averaged version of Eq. (C.14), as

needed for 〈σDC〉dis. As an intermediate result, we obtain
∫
dx2j11′ · j 22′〈P̃12′

21′ (E ; Ω1,Ω2)〉dis

=
e2~4

4m2Vol2

∑

p1p2q

(q + p1 − p2) · (q − p1 + p2)〈P̄E,Ω1,Ω2

q,p1,p2
〉dis

×
∫
dr2e

i(r1−r2)·(p1−p2) (C.28a)

= σDrude
DC 2π~

[
2π(Ω1 − Ω2) −

1

πν~

∫
(dq) C̄E

q(Ω1,Ω2)

]
, (C.28b)

where Eq. (F.6b) was used (under neglect of E±1/2Ω1/2 in the frequency arguments

of all electron Green’s functions) to perform the momentum integrals, i.e., the∫
(dq) integral for the Drude contribution to P̄E,Ω1,Ω2

q,p1,p2
, and the

∫
(dp1) integral

for the Cooperon contribution (for the latter, the 1/2q arguments in the external

electron leg Green’s functions were neglected). Inserting Eqs. (C.18) and (C.28b)

into Eq. (C.14), we readily find:

σDC = σDrude
DC

[
1 − 1

πν~

∫
dε~[−n′

0(~ε)]

∫
(dq)

∫
(d2ω̃)C̄ε−

1
2
ω̃

q (−ω̃, ω̃)

]
. (C.29)

Equation (C.29) is the desired generalization of Eq. (C.8b) [and in the absence of

interactions, duly reduces to the latter, via Eq. (C.27)].

C.6. Cooperon in position-time domain

For our present purpose of relating the diagrammatic and path integral aproaches

to each other, it is instructive to understand the consequences of Eq. (C.26) also

in path integral language. To this end, let us transcribe Eq. (C.26) back into the

position-time domain, in which the Cooperon is defined as:

C̃E
ρ (τ1, τ2) ≡

∫
(dq)(dΩ1)(dΩ2)e

i(ρ·q−Ω1τ1+Ω2τ2)C̄E
q(Ω1,Ω2) . (C.30)

Inserting Eqs. (C.25) and (C.26) into Eq. (C.16a) yields 〈P̃ 〉dis = P̃Drude + P̃WL,

with

P̃ 12,Drude
43 = ~

2G̃Rr12(t12)G̃
A
r43

(t43) , (C.31a)

P̃ 12,WL
43 =

∫
dr̃1dr̃2dt̃1dt̃

′
1dt̃2dt̃

′
2(dE)

2πντel2/~
e−iE(t̃1+t̃

′

1−t̃2−t̃
′

2)

× C̃E
r̃1−r̃2

(
1

2
(t̃1 − t̃′1),

1

2
(t̃2 − t̃′2)

)
~

2G̃Rr1−r̃1(t1 − t̃1)

× G̃Ar4−r̃1(t4 − t̃′1)G̃Rr̃2−r2
(t̃2 − t2)G̃Ar̃2−r3

(t̃′2 − t3) . (C.31b)
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Figure C.2(b) offers an intuitive interpretation of these expressions: P̃ 12,Drude
43 gives

the amplitude for propagation from (r2, t2) → (r1, t1) (forward in time) times that

for (r3, t3) → (r4, t4) (backward in time). And P̃ 12,WL
43 gives the amplitude for

forward propagation from (r2, t2) → (r̃2, t̃2) → (r̃1, t̃1) → (r1, t1), times that for

backward propagation from (r3, t3) → (r̃2, t̃
′
2) → (r̃1, t̃

′
1) → (r4, t4). The middle

part of the forward and backward paths have the same beginning and end points

in space, albeit not in time, and hence can interfere constructively if the paths

connecting them are time-reversed partners.

The approximation mentioned above of neglecting ±q/2 and E ± Ω1,2/2 in the

arguments of external ḠR/A functions has a counterpart in the position-time do-

main: when performing the integrals in Eq. (C.31b), it corresponds to exploiting

the fact that G̃r(t̃) has a short range in space (|r| . τel) and time (|t̃| . lel) [cf.

Eq. (F.2d)]. To be explicit, the latter fact means that the disordered Green’s func-

tions occuring in the second line of Eq. (C.31b) act effectively as delta-functions in

time as far as the factor e−iE( )C̃E
r̃1−r̃2

( ) is concerned. Thus, in the latter we may

make the replacements t̃1 → t1, t̃
′
1 → t4, t̃2 → t2, t̃

′
2 → t3, after which the four

time-integrals each yield a zero-frequency Green’s function,
∫
dt̃ G̃r(t̃) = G̃r(ε = 0).

Introducing the sum and difference coordinates

ρ̄1 ≡ rF1 + rB4
2

, ρ1 ≡ rF1 − rB4 , ρ̄2 ≡ rF2 + rB3
2

, ρ2 ≡ rF2 − rB3 , (C.32)

recalling similar definitions (C.17) for the time variables, and shifting the space

integrations according to r̃i → r̃i + ρ̄i for i = 1, 2, Eq. (C.31b) gives:

P̃ 12,WL
43 =

∫
dr̃1dr̃2

∫
(dE)e−iE τ̄12

C̃E
ρ̄1−ρ̄2+r̃1−r̃2

(τ1, τ2)

2πντel2/~

× ~
2G̃R1

2
ρ1−r̃1

(0)G̃A− 1
2
ρ1−r̃1

(0)G̃R
r̃2−

1
2
ρ2

(0)G̃A
r̃2+

1
2
ρ2

(0) . (C.33)

Since the zero-frequency Green’s functions G̃Rr (0) decay with distance as e−|r|/2lel ,

we note that r̃i ' 1/2ρi ' −r̃i, which implies that |r̃i| . lel and |ρi| . lel. Thus,

we may drop the terms r̃1 − r̃2 from the argument of C̃E in Eq. (C.33), whereupon

the spatial integrations can be performed explicitly, using
∫ ∞

−∞

dt̃i

∫ ∞

−∞

dt̃j

∫
dr̃lG̃R/Ail (t̃i)G̃A/Rlj (t̃j) =

δlel(rij)

ε2F
, (C.34a)

δ̃lel(rij) ≡
(
lelk

3
F

4π

)
e−rij/2lel

sin(kFrij)

rij
, (C.34b)

where δ̃lel(rij) is a “smeared-out delta function” of normalization
∫
drij δ̃lel(rij) = 1

and width ' 1/kF, the Fermi wavelength (since 1/kF � lel, the width is set by

the oscillating factor sin(kFr)/r, not by the exponential e−r/2lel). Thus, Eq. (C.33)

becomes:

P̃ 12,WL
43 =

~
2

ε4F
δ̃lel(ρ1)δ̃lel(ρ2)

∫
(dE)e−iE(τ̄1−τ̄2)

C̃E
ρ̄1−ρ̄2

(τ1, τ2)

2πντel2/~
. (C.35)
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This useful result clarifies the relation between the coordinates 1, 2, 3, 4 of P̃ 12,WL
43 ,

and the times and spatial coordinates relevant for the Cooperon. In particular, we

see that P̃ 12,WL
43 is nonzero only for |ρ1| = |r1 − r4| . 1/kF and |ρ2| = |r2 −

r3| . 1/kF. Moreover, if we want to describe a Cooperon with a specified average

energy E , we need to Fourier-transform P̃ 12,WL
43 with

∫
dτ̄12e

iE τ̄12 . Note that for

P̃ 12′,WL
21′ , as needed in Eqs. (C.19), the Cooperon position argument is identically

zero, ρ̄1 − ρ̄2 = 0, while |ρ1| = |r1 − r2| ensures that r1 and r2 lie close together.

Appendix D. Time-Slicing of Path Integral for Ũaij

In this appendix, we give an explicit time-slicing definition for the path integral

representation (B.55) of the propagators Ũaij used in the main text, and derive

various properties thereof. Our discussion is very (perhaps overly) detailed, since

the object of interest is somewhat unconventional, namely a path integral for a

non-local Hamiltonian. We begin [Secs. D.1 to D.3] by defining it in terms of a path

integral
∫
DR

∫
DP over paths in both coordinate and momentum space, which is

the form used by GZ; then [Sec. D.4] we explicitly perform the
∫
DP integral to

arrive at a “coordinate-space-only” path integral
∫
D̃′R, which is the form used in

Appendices B.5 to B.8. Finally [Sec. D.5], we present explicit expressions for the

effective Hamiltonian H̄a
n in the position-momentum representation used by GZ,

and [Sec. D.6] recover from this GZ’s expressions for the effective action (iS̄R +

S̄I)[R
a,P a].

D.1. Time-slicing definition

The propagators Ũaij are defined by the requirement that they have to satisfy both

the conditions Eqs. (B.39). This fact can be used to give meaning to the formal path

integral of Eq. (B.55), by using the standard time-slicing procedure to construct

an object that satisfies this requirement. To this end, we divide the interval [t′, t]

into M = (t − t′)/ε time intervals, with tn = t′ + nε for n = 0, . . .M , and write

ran = ra(tn)[r
a
0 = rj , r

a
M = ri] and pan = pa(tn). Then the following construction,

illustrated in the first row of Fig. D.1, has the desired properties:

ŨFij (t, t′)

ŨBji (t
′, t)

}
≡ δσiσj lim

M→∞

M−1∏

n=1

(∫
dran

) M∏

n=1

(∫
dpan

(2π)d

)
e(isaε/~)

∑M
n=1

L̄a
n (D.1a)

≡
∫

DR
∫

DP e(isa/~)S̄a[Ra,Pa] . (D.1b)

The second line, with action S̄a = ε
∑
n L̄

a
n, is a formal shorthand for the detailed

time-slicing construction of the first line. Here and below, t > t′, the index value

a = F or B should be used for the upper or lower term in the curly bracket,

and sa stands for sF/B = ±. The multiple products in Eq. (D.1a) contain one

momentum integral (M in total) for each interval, and one position integral (M −1
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Fig. D.1. Three representations of the propagators (a) ŨF
ij (t, t′) and (b) ŨB

ji (t
′ , t), with t > t′.

Arrows point from the second to the first index of propagators. The first row illustrates the
position-momentum (dots-squares) time-sliced path integral representation of Eq. (D.1a) (with

the choice ba = δaB in cf. Eq. (D.3), so that Ra
n = ra

n−1); the wavy line indicates which end of
the n-th time slice the interaction field V−(tn,ra

n−1) is attached to. The second row depicts the
first order perturbation expansion of Eq. (D.8b), obtained after performing the momentum path
integral, using Eq. (D.9) to convert h̄a

V to h̃a
V . The third row shows the N-th order perturbation

term of Eq. (D.11b). The double dots remind us that the vertices h̃F
V nn̄ and h̃B

V n̄n are nonlocal
(since they contain factors of ρ̃nn̄ or ρ̃n̄n): they arise from “pulling together” the two local vertices
at times tn and tn−1 of the second row of this figure into a single nonlocal vertex at time tn, with
which we hence associate a double integration

∫
dxF

nn̄ or
∫

dxB
n̄n. The dot carrying a bar indicates

which of these two integration variables occurs in the argument of V−(rn̄), namely the one drawn
on the side of earlier times.

in total) for each boundary between intervals (see Fig. D.1). The Lagrangian L̄an
and Hamiltonian H̄a

n ≡ H̄a(tn,R
a
n,P

a
n) associated with the n-th interval are given

by (here P a
n ≡ ~pan):

L̄an ≡ P a
n · δr

a
n

ε
− H̄a

n , (D.2a)

H̄a
n ≡

∫
d(δran)e

−isap
a
n·δra

nH̃a(tn,R
a
n + sa(1 − ba)δr

a
n,R

a
n − sabaδr

a
n) . (D.2b)

Here we introduced relative and “asymmetric center-of-mass” coordinates for the

nth interval,

δran = ran − ran−1 , Ra
n =

{
rFn−1

rBn
+ sabaδr

a
n =

{
rFn

rBn−1

− sa(1 − ba)δr
a
n , (D.3)

where the “asymmetry parameter” ba is a real number with 0 ≤ ba ≤ 1, which
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in general can be different for a = F or B. The actual values chosen for ba do

not affect any of the final results, hence they can be chosen according to taste or

convenience, or left unspecified, as we shall do for now. It is to be understood that

under the path integral, the notation Ra(tn) and P a(tn) [e.g., as arguments of the

fields V±(tn,R
a(tn)], should be interpreted as Ra

n and P a
n, respectively.

The arguments of H̃a in Eq. (D.2b) were purposefully constructed such that the

inverse Fourier transform of Eq. (D.2b) yields
∫

dpan
(2π)d

eisap
a
n·δra

nH̄a(tn,R
a
n,P

a
n) =

{
H̃F (tn, r

F
n , r

F
n−1) ,

H̃B(tn, r
B
n−1, r

B
n ) .

(D.4)

This equation can be regarded as the defining relation for H̄a
n (and Eq. (D.2b) as its

consequence): H̄a
n is the (generally asymmetric) Fourier transform, with respect to

the relative coordinate δran, of H̃a(tn), in which the position arguments ran and ran−1

occur in a time-ordered or anti-time-ordered fashion for a = F or B, respectively

(i.e., the coordinate associated with the later time, tn, appears to the left or right of

the earlier time, tn−1, respectively). This, of course, is required to ensure that the

path integral representation for ŨFij (t, t′) and ŨBji (t
′, t) produces time-ordered and

anti-time-ordered expressions, respectively, as illustrated in Fig. D.1. The reason for

using a factor sa in the Fourier transform exponentials e−isar
a·pa

in the definition

(D.2b) of H̄a
n and its inverse, Eq. (D.4), is simply that the factor eisar

a·pa

occuring

in the latter is generated by the combination isaL̄
a
n in the action of Eq. (D.1a).

Finally, note also that H̄a(Ra,P a) is independent of P a if and only if H̃a(rai , r
a
ı̄ )

is proportional to δ̃(rai − raı̄ ).

D.2. Verifying the defining equations and composition rule

It is straightfoward to verify that Eq. (D.1a) satisfies all the requirements expected

of a propagator. We shall now first show that it fulfills the defining conditions for

Ũaij , namely Eqs. (B.39), and then check that it satisfies the usual composition

rule. Since the manipulations for a = F and a = B are very similar, but differ in

numerous minor details, we shall mostly consider the former case only. Hence, a

will be understood to stand for F below, except when explicitly noted otherwise.

Normalization: To recover the normalization condition Eq. (B.39a), take the

limit t → t′ by taking M = 1 and ε → 0. Then the entire path integral reduces

simply to

lim
t→t′

Ũaij (t, t
′) = δσiσj

∫
dpa1

(2π)d
eip

a
1 ·(r

a
i −r

a
j ) = δ̃ij . (D.5)

Equation of motion: To recover the equation of motions for ŨFij and ŨBji , namely

Eqs. (B.39b) and (B.39c), add one time slice in Eq. (D.1a) (M → M + 1, so that

now rai = raM+1), and expand the corresponding exponential e(isaε/~)La
M+1 to first

order in ε:

ŨFij (t+ ε, t′) =
∑

σM

δσiσM

∫
drFM

∫
dpFM+1

(2π)d
eip

F
M+1·δr

F
M+1

[
1 − iε

~
H̄F
M+1

]
UFMj(t, t

′)
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= UFij (t, t′) − iε

~

∫
dxFM H̃

F
iM (t)ŨFMj(t, t

′) , (D.6a)

ŨBji (t
′, t+ ε) =

∑

σM

δσiσM

∫
drBM

∫
dpBM+1

(2π)d
UBjM (t′, t)e−ip

B
M+1·δr

B
M+1

[
1 +

iε

~
H̄B
M+1

]

= UBji (t′, t) +
iε

~

∫
dxBM Ũ

B
jM (t′, t)H̃B

Mi(t) . (D.6b)

Here Eqs. (D.4) and raM+1 = rai were used to obtain Eqs. (D.6a) and (D.6b), which,

in the limit ε→ 0, reproduce Eqs. (B.39b) and (B.39c).

Composition rule: Next we check that Eq. (D.1a) also satisfies the usual com-

position rules for propagators, namely

∫
dx1U

F
i1 (t, t1)U

F
1j (t1, t

′) = UFij (t, t′) ,

∫
dx1U

B
j1 (t′, t1)U

B
1i (t1, t) = UBji (t′, t) .

To this end, let M1 be the number of intervals between t1 and t′, i.e., write t1 = t′+

εM1 and r1 = rM1
. Then, by concatenating two expressions of the form Eq. (D.1a)

for UFi1 and UF1j , we find that the left-hand side of the above equation can be

written, up to a factor δσiσ1
δσ1σj , as

∫
drF1 lim

M→∞

M−1∏

n=M1+1

(∫
drFn

) M∏

n=M1+1

(∫
dpFn
(2π)d

)
e(iε/~)

∑M
n=M1+1

L̄F
n

×
M1−1∏

n=1

(∫
drFn

) M1∏

n=1

(∫
dpFn
(2π)d

)
e(iε/~)

∑M1
n=1 L̄

F
n . (D.7)

This is equal to ŨFij (t, t′) as given by Eq. (D.1a), since
∫
drF1 =

∫
drFM1

. The deriva-

tion for ŨBji is entirely analogous.

D.3. Power series expansion in h̃a:

The power series expansions of ŨFij (t, t′) and ŨBji (t
′, t) in powers of h̃FV and h̃BV

are given by Eq. (B.48). To illustrate how they come about from the time-slicing

definition (D.1a) of the path integral, we begin by considering only the first order

terms (the higher order terms will be discussed subsequently). To this end, we

expand each factor e(isaε/~)L̄a
n1 in Eq. (D.1a) to linear order in h̄aV n1

, to obtain

e(isaε/~)L̄0a
n1 +eisap

a
n1

·δra
n1 (−saiε/~)h̄aV n1

. Here L̄0a
n1

is the V -independent part of L̄an1
,

and for the second term, all contributions of order ε2 or higher were dropped (in

particular, we replaced e−(isaε/~)h̄a
0n1 by 1). Then, to leading order in ε, Eq. (D.1a)
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readily yields the following expression:

ŨFij (t, t′) − Ũ0
ij(t, t

′)

ŨBji (t
′, t) − Ũ0

ji(t
′, t)

}

= δσiσj lim
M→∞

(−saiε)
~

(D.8a)

×
M∑

n1=1

{[
M−1∏

n=n1+1

(∫
dran

) M∏

n=n1+1

(∫
dpan

(2π)d

)
e(isaε/~)

∑M
n=n1+1

L̄0a
n

]

×
[∫

dran1

∫
dran1−1

∫
dpan1

(2π)d
eisap

a
n1

·δra
n1 h̄aV n1

]

×
[
n1−2∏

n=1

(∫
dran

) n1−1∏

n=1

(∫
dpan

(2π)d

)
e(isaε/~)

∑n1−1

n=1 L̄0a
n

]}
+ · · ·

= δσiσj lim
ε→0

(−saiε)
~

M∑

n1=1

∫
dran1

∫
dran1−1

×
{
Ũ0F
in1

(t, tn1
)h̃FV n1n1−1(tn1

)Ũ0F
n1−1j(tn1−1, t

′)

Ũ0B
jn1−1j(t

′, tn1−1)h̃
B
V n1−1n1

(tn1
)Ũ0B

n1i(tn1
, t)

+ · · · (D.8b)

= − isa
~

∫ t

t′
dt1

∫
dx1,1̄





Ũ0F
i1 h̃FV 11̄Ũ

0F
1̄j

Ũ0B
j1̄ h̃

B
V 1̄1Ũ

0B
1i

+ · · · , (D.8c)

in agreement with the N = 1 terms of Eq. (B.48). For Eq. (D.8b), which is

illustrated in the second row of Fig. D.1, we have evoked Eq. (D.4) to make the

identification
∫

dpan1

(2π)d
eisap

a
n1

·δra
n1 h̄aV n1

=

{
h̃FV n1n1−1(tn1

)

h̃BV n1−1n1
(tn1

)
. (D.9)

From the above excercise, we extract the following rule of thumb: when a function

f̄a(t1) ≡ f̄a
(
t1,R

a(t1),P
a(t1)

)
[e.g., h̄aV above] occurs at time t1 along the forward

or backward parts of the Keldysh path integral
∫
DRFDRB , the

∫
dpan1

eisap
a
n1

·δra
n1

momentum integral at the corresponding time slice tn1
= t1 converts it into

f̃Fn1n1−1(tn1
) or f̃Bn1−1n1

(tn1
). Combining this with the propagators implicit in

eisaS̄
a
0 , generates terms of the form Ũ0F

i1 f̃F11̄Ũ
0F
1̄j or Ũ0B

j1̄ f̃
B
1̄1Ũ

0B
1i , respectively [where

f̄a and f̃a are Fourier transform pairs, in analogy to H̄a and H̃a of Eqs. (D.2b)

and (D.4)]. To be explicit, we have

δσiσj

∫ Ra(ti)=ri

Ra(tj)=rj

DRa

∫
DP aeisaS̄

a
0 (t,t′)f̄a(t1) =

∫
dx1,1̄





Ũ0
i1f̃

F
11̄Ũ

0
1̄j

Ũ0
j1̄f̃

B
1̄1Ũ

0
1i

. (D.10)
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Having found the rule (D.10), it is straightforward to go beyond the first order and

to recover the full perturbation expansion from the path integral:

ŨFij (ti, tj)

ŨBji (tj , ti)

}
= δσiσj

∫ ri

rj

DRa(t1)

∫
DP a(t1)e

±[iS̄a
0 (t,t′)−

∫
t
t′
dt1h̄

a
V (t1)] (D.11a)

= δσiσj

∫ ri

rj

DRa(t1)

∫
DP a(t1)e

±iS̄a
0 (t,t′)

×
∞∑

N=0

(∓i)N
~N

∫ ti

tj

dt1

∫ t1

tj

dt2 · · ·
∫ tN−1

tj

dtN h̄
a
V (t1)h̄

a
V (t2) · · · h̄aV (tN )

=

∞∑

N=0

∫ ti

tj

dt1

∫ t1

tj

dt2 · · ·
∫ tN−1

tj

dtN

∫
dx1,1̄dx2,2̄ · · · dxN,N̄

×





(−i/~)N Ũ0F
i1 h̃FV 11̄Ũ

0F
1̄2 · · · h̃F

VNN̄
Ũ0F
N̄j

(+i/~)N Ũ0B
jN̄
h̃B
V N̄N

· · · Ũ0B
21̄ h̃

B
V 1̄1Ũ

0B
1i

. (D.11b)

=

∞∑

N=0

∫ ti

tj

dt1 · · · dtN
∫
dx1,1̄ · · · dxN,N̄

×





G̃Ri1h̃

F
V 11̄G̃

R
1̄2 · · · h̃FV NN̄ G̃RN̄j

G̃A
jN̄
h̃B
V N̄N

· · · G̃A21̄h̃BV 1̄1G̃
A
1i

. (D.11c)

Equation (D.11b), which is illustrated in the third row of Fig.D.1, was obtained

from the line preceding it by multiple applications of the rule of thumb (D.10), and

reproduces the expansions of Eqs. (B.48). For Eq. (D.11c), we recalled Eq. (B.45)

to set Ũ0F/B = ±i~G̃R/A along the forward or backward contours, respectively.

D.4. Coordinate-space-only path integral

Since the power series expansions (D.11b) for Ũaij do not contain any explicit mo-

mentum integrals, they may be used as starting points for deriving coordinates-only

path integral expressions containing no
∫
DP a integrations at all, so that only the

coordinate integrations
∫
DRa remain. To this end, we simply perform the

∫
DP a

integrals in the definition of the free propagators Ũ0a
ij explicitly, with the well-known

result:

Ũ0F
ij (t, t′)

Ũ0B
ji (t′, t)




 ≡ δσiσj lim
M→∞

M−1∏

n=1

(∫
dran

) M∏

n=1

(∫
dpan

(2π)d

)

× exp

[
isaε

~

M∑

n=1

(
~pan · δr

a
n

ε
− ~

2pa2

2m
− Vimp(R

a
n)

)]
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= δσiσj

[
m

2πisaε~

]Md/2 M−1∏

n=1

∫
dran

× exp

[
isaε

~

M∑

n=1

(
m

2

[
δran
ε

]2
− Vimp(R

a
n)

)]

≡
∫ Ra(t)=ri

Ra(t′)=rj

D̃Rae(isa/~)S̃a
0 (t,t′) (D.12a)

S̃a0 (t, t′)[Ra(t3)] ≡
∫ t

t′
dt3

[
1

2
mṘ

a2
(t3) − Vimp(R

a(t3))

]
. (D.12b)

Here S̃a0 is the standard action for a noninteracting electron in a disorder potential,

and the tilde indicates that [in contrast to H̄a of Eq. (D.2b)] it is a functional of

Ra(t3) only, not of P a(t3) too. The tilde on
∫
D̃R in Eq. (D.12a) indicates that

the measure includes the prefactor in the line above it. Now, if we take the power

series expansion (D.11b) for Ũaij and insert Eq. (D.12a) for each occurrence of Ũ0a
ij ,

we obtain for Ũaij a coordinate-only path integral expression with a precise (though

cumbersome) time-slicing definition. In the main text, we have used for the path

integral so obtained the formal path integral notation (B.55), with actions defined

by Eqs. (B.56) and (B.57), and measure
∫
D̃′R, where the prime reminds us of the

double position integrals
∫
dxi,̄ı occuring in Eq. (D.11b). The points discussed after

Eq. (B.57) in the main text all follow directly from the explicit construction given

above.

D.5. Explicit expressions for H̄a
n

The material presented up to now in this appendix was general, applicable to

any nonlocal Hamiltonian of the form H̃a
ij = δ̃ijh0j + h̃aV ij . Let us now be more

concrete and specialize to the Hamiltonian defined by Eqs. (B.36), in order to

verify GZ’s expression for the effective action derived for their
∫
DR

∫
DP path

integral.

Inserting Eqs. (B.36) into Eq. (D.2), we readily find that

H̄a
n = h̄0(R

a
n,P

a
n) + h̄aV (tn, t0;R

a
n,P

a
n) = h̄0n + h̄aV n , (D.13a)

h̄aV n =
∑

α=±

w̄aα(tn, t0;R
a
n,P

a
n)Vα(tn,R

a
n) , (D.13b)

h̄0(R
a,P a) ≡ P a2

2m
+ Vimp(Ra) − µ , (D.13c)
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w̄a±(t, t0;R
a,P a) ≡





e

esa
1

2
e−i(ba−δaB)∇pa ·∇Ra [1 − 2ρ̄a(t, t0;R

′a,P a)]
, (D.13d)

ρ̄a(t, t0;R
a,P a) =

∫
drae−isap

a·ra

ρ̃(ns)(Ra + sa(1 − ba)r
a,Ra − sabar

a) .

(D.13e)

Here h̄0(R
a,P a) and ρ̄a(t, t0;R

a,P a) are, respectively, the free Hamiltonian and

the single-particle density matrix (in the presence of interactions but without source

terms) in the mixed representation. In the definition (D.13d) of w̄a−, it is to

be understood that R′a should be equated to Ra after evaluating the action of

the exponential differential operator on the function V−(tn,R
a
n) to the right of

w̄a−(t, t0;R
a,P a) in Eq. (D.13b), and all equations derived therefrom.

For general choices of ba, the shift operator e−i(ba−δaB)∇pa
n
·∇Ra

n in Eq. (D.13d)

is needed for the following reason: In the defining Eqs. (B.36a) for H̃F
iı̄ and H̃B

ı̄i ,

the arguments of the field V−ī are evaluated at rFı̄ and rBı̄ , respectively. When

considering the n-th interval (for which rai = ran, r
a
ı̄ = ran−1), these arguments of

V−ı̄ become rFı̄ = rFn−1 = RF
N − bF δr

F
n and rBı̄ = rBn−1 = RB

n − (1 − bB)δrBn [cf.

Eq. (D.3)], which are evidently shifted relative to the argument at which the field

V−(tn,R
a
n) is evaluated in Eq. (D.13b), namelyRa

n, by an amount −sa(ba−δaB)δran.

The exponential shift operator implements this shift [as can be verified by inserting

Eqs. (D.13) into Eq. (D.4) to recover HF
iı̄ and HB

ı̄i ]. Evidently, though, one can

achieve RF
n = rFn−1(= rFj ) and RB

n = rBn (= rBi ) and hence avoid the need for

shifts, by making the special, “maximally asymmetric” choice ba = δaB . Indeed,

for this choice, which we shall adopt henceforth, the exponential shift operators

e−i(ba−δaB)∇p·∇R reduce to unity. Moreover, since Ra
n then depends on only one

of the position coordinates ran and ran−1 associated with the n-th time interval,

namely the second, which greatly simplifies subsequent manipulations. The “price”

to be paid for this simplification is not high – one merely has to remember that

the definitions (D.2b) of H̄a
n in terms of the Fourier transforms of H̃a and ρ̃a with

respect to the relative coordinate become fully asymmetric:

H̄F
n ≡

∫
d(δrFn )e−ip

F
n ·δrF

n H̃F (tn, r
F
n−1 + δrFn , r

F
n−1)

= h̄0(r
F
n−1,p

F
n ) + h̄FV n , (D.14a)

H̄B
n ≡

∫
d(δrBn )eip

B
n ·δrB

n H̃B(tn, r
B
n−1, r

B
n−1 − δrBn )

= h̄0(r
B
n−1,p

B
n ) + h̄BV n , (D.14b)

where h̄aV n =
∑

α=± w̄
aα
n Vα(tn, r

a
n−1), with w̄a+n = e and w̄a−n = esa[1−2ρ̄an]/2, and

ρ̄an is defined in terms of ρ̃
(ns)
ij (tn, t0) by Fourier transform relations [Eq. (D.13e)]

that are analogous to those [Eqs. (D.14)] for H̄a
n in terms of H̃a

ij(tn).
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D.6. GZ’s effective action in position-momentum representation

Having specified the time-sliced versions of H̄a in the position-momentum repre-

sentation, it is straightforward to also derive the effective action (iS̄R+ S̄I)[R
a,P a]

for this representation: simply repeat the strategy followed in Appendix B.5.5 to

5.8, but use the position-momentum representation (denoted by bars instead of

tildes) throughout. Since the details are very analogous, we shall be very brief, and

indicate only the main differences.

The starting point is again Eq. (B.58) for 〈J̃V12′,22̄′,2̄1′
(t1, t2; t0)〉V,ns, but with the

coordinates-only path integral measure F
∫
B

∫
D̃′(R) replaced by a position-momentum

path integral measure, F
∫
B

∫
D(RP ), which is a shorthand for

F

∫ iF

jF

B

∫ ı̄B

̄B

D(RP ) · · · ≡
∫ RF (ti)=ri

RF (tj)=rj

DRF (t3)

∫
DP F (t3)e

iS̄F
0 (ti,tj)/~

×
∫ RB(ti)=rı̄

RB(tj)=r̄

DRB(t3)

×
∫

DPB(t3)e
−iS̄B

0 (ti,tj)/~ · · · . (D.15)

S̄a0 [Ra(t3),P
a(t3)] in the weighting factor is the action for a single, free electron,

S̄a0 (ti, tj) =

∫ ti

tj

dt3[P
a(t3) · ∂t3Ra(t3) − h̄0(R

a(t3),P
a(t3))] , (D.16)

and the bar on S̄0 (and B̄, S̄R/I below) indicates that [in contrast to S̃a0 , B̃, S̃R/I
of Appendix B] they are functionals of Ra(t3) and P a(t3), not of Ra(t3) only. In

Eqs. (B.60), B̃α3 is replaced by

B̄α(t3, r3) ≡
∑

a

saW̄
aα
3a
δ(r3 −Ra(t3)) , W̄ a+

3a
= e , (D.17a)

W̄ a−
3a

= e
1

2
sa[1 − (θ32 + yaθ23)ρ̄

a(t3, t0;R
a(t3),P

a(t3))] . (D.17b)

Now use precisely the same set of approximations and arguments as in Ap-

pendix B.5.6 to B.5.8 to derive the effective action iS̄R + S̄I . One readily arrives at

an equation just like (B.82), but with (iL̃R/L̃I) of Eqs. (B.83) replaced byl

(iL̄R/L̄I)3a4a′
=

1

2
sasa′W̄

a+
3a
W̄ a′∓

4a′
(2R̃/Ĩ)3a4a′

, (D.18)

where the density matrix occuring in W̄ a− now is the free one, ρ̄a0 . Multiplying out

the terms in Eq. (D.18) explicitly (and setting (θ4a′2 + ya
′

θ24a′
) = 1 for reasons

lThe θ34(iR̃/Ĩ)34 occuring in Eqs. (B.83) was written as 1/2(2iR̃/Ĩ)34 here, exploiting the sym-
metry Ĩ34 = Ĩ43.
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explained in footnote j on page 783), we find

S̄R(t1, t0) =
e2

2

∫ t1

t0

dt3

∫ t1

t0

dt4

{[
1 − 2ρ̄F0 (RF (t4),P

F (t4))
]

×
(
R̃[t34,R

F (t3) −RF (t4)] − R̃[t34,R
B(t3) −RF (t4)]

)

+
[
1 − 2ρ̄B0 (RB(t4),P

B(t4))
](
R̃[t34,R

F (t3) −RB(t4)]

− R̃[t34,R
B(t3) −RB(t4)]

)}
, (D.19a)

S̄I(t1, t0) =
e2

2

∫ t1

t0

dt3

∫ t1

t0

dt4

{
Ĩ [t34,R

F (t3) −RF (t4)]

− Ĩ[t34,R
B(t3) −RF (t4)] − Ĩ [t34,R

F (t3) −RB(t4)]

+ Ĩ[t34,R
B(t3) −RB(t4)]

}
. (D.19b)

This reproduces GZ’s expressions for the effective action, since Eqs. (D.19) are the

analogues of (GZ-II.54) and (GZ-II.55) [our 1st, 2nd, 3rd and 4th terms, having

aa′ = FF , BF , FB, BB, correspond to GZ’s 1st, 4th, 3rd and 2nd terms, respec-

tively]. The only difference is that in their Pauli factor, GZ have evidently replaced

our ρ̄a0
(
Ra(t),P a(t)

)
by n

(
Ra(t),P a(t)

)
, which they define as the Fermi function

n(h̄0), evaluated at energy h̄0(R
a(t),P a(t)

)
.

GZ offered no justification for the latter replacement in GZ99,3 but have de-

fended it in subsequent papers5 by arguing that it amounts to a quasiclassical

approximation that neglects terms of order ~. We have argued in a previous pub-

lication16 that the “small parameter” that would protect this approximation is

actually τel~/T , which evidently is not small in the T → 0 limit of present interest.

Much more alarming, though, is that when averaging over all self-returning random

walk paths, GZ proceeded to make the assumption that “n0 depends only on the

energy and not on time (our emphasis), because the energy is conserved along the

clasical path” [see discussion after Eq. (GZ-II.68)]. As argued in Sec. 4 of the main

text, however, this neglects recoil, and produces incorrect results. A more accurate

way of treating the Pauli factor, that properly includes recoil, is discussed in Sec. 3

of the main text.

Appendix E. Diagrammatic Keldysh approach

In order to facilitate comparison between GZ’s notation and ours, this appendix

collects some standard definitions (following Rammer and Smithm) and results for

electron and field correlators used in the Keldysh approach. [Where relevant, GZ’s

notation is given in brackets.] Below, subscripts i are abbreviations for (ti, xi) when

m J. Rammer and H. Smith, Rev. Mod. Phys. 58, 323 (1986).
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used for fermion fields or for (ti, ri) when used for interaction fields. G̃ij is a short-

hand for G̃ij(tij) ≡ G(tij ;xi, xj) [and similarly for L̃ij ], i.e. the time-argument, when

not displayed explicitly, will be understood to be tij = ti − tj . As elsewhere, the

tilde signifies the matrix structure in coordinate space, while bold symbols are used

for matrices in Keldysh space, e.g. G̃ij .

E.1. Electron correlators

We begin with the electronic Green’s functions G̃ij , and consider for the moment

only those for free, noniterating electrons (i.e., evaluated for Va = 0): the basic

correlators

G̃<ij ≡ i

~
〈ψ̂†
I (tj , xj)ψ̂I (ti, xi)〉0 [= GGZ

12 (ij)] , (E.1a)

G̃>ij ≡ − i

~
〈ψ̂I(ti, xi)ψ̂

†
I(tj , xj)〉0 [= GGZ

21 (ij)] , (E.1b)

are used as follows to construct the time-ordered, anti-time-ordered, retarded, ad-

vanced, Keldysh and contour-ordered Green’s functions, respectively:

G̃Tij ≡ θ(tij)G̃
>
ij + θ(tji)G̃

<
ij [= GGZ

11 (ij)] , (E.2a)

G̃T̄ij ≡ θ(tji)G̃
>
ij + θ(tij)G̃

<
ij [= GGZ

22 (ij)] , (E.2b)

G̃Rij ≡ θ(tij)(G̃
>
ij − G̃<ij ) [= G̃R,GZ(ij)] , (E.2c)

G̃Aij ≡ −θ(tji)(G̃>ij − G̃<ij ) [= GA,GZ(ij)] , (E.2d)

G̃Tij = G̃<ij + G̃Rij = G̃>ij + G̃Aij , (E.2e)

G̃Tij = G̃<ij − G̃Aij = G̃>ij − G̃Rij , (E.2f)

G̃Kij ≡ G̃>ij + G̃<ij = G̃Rij − G̃Aij + 2G̃<ij , (E.2g)

Ũ0
ij ≡ i(G̃Rij − G̃Aij ) = i(G̃>ij − G̃<ij ) , (E.2h)

G̃cij ≡
{
G̃>ij for ti >c tj ,

G̃<ij for ti <c tj ,
(E.2i)

where ti >c tj means that ti is further along the Keldysh contour than tj , and Tc
denotes contour-ordering along this contour. (The Keldysh contour runs from the

initial time t0 to +∞ and back.) Under complex conjugation, the following relations

hold:

(G̃
R/A
ij )∗ = G̃

A/R
ji , (G̃Kij )∗ = −G̃Kji , G̃<,>ij )∗ = −G̃<,>ji . (E.3)

It is customary to represent the contour-ordered Green’s function G̃cij by a 2×2 ma-

trix G̃0
ij in Keldysh space, whose components are the quantum-statistical averages
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of contour-ordered operator products,

(G̃0
ij)
aa′ ≡ 〈 ˆ̃Gaa′

ij 〉0 , ˆ̃
Gaa′

ij ≡ − i

~
Tc[ψ̂aI (ti, xi)ψ̂a

′†
I (tj , xj)] , (E.4)

and are labeled by indices a, a′ that take the values F and B, with the convention

that if a = F (or B), then ti resides on the forward (or backward) part of the

Keldysh contour, and similarly for a′ and tj . In matrix notation, we have

G̃0
ij = 〈 ˆ̃Gij〉0 = − i

~
〈Tcψ̂iψ̂

†

j〉0 =

(
G̃Tij G̃<ij

G̃>ij G̃T̄ij

)
, (E.5)

where we used a boldface notation for the fermion fields to indicate that it has two

components in Keldysh space, ψ̂i ≡
(ψ̂F

I (ti,xi)

ψ̂B
I (ti,xi)

)
. [Note that (G̃

0

ij)
aa′ corresponds to

GZ’s GGZ
aa′(ij), with F → 1 and B → 2]. A more convenient, since tridiagonal, form

is obtained using the representationn

ψ̂
i
≡ Lτ 3ψ̂i , ψ̂

†

i
≡ ψ̂†

iL
† , ˆ̃

Gij ≡ − i

~

[
Tcψ̂iψ̂

†

j

]
, (E.6a)

G̃0
ij ≡ 〈 ˆ̃Gij〉0 = Lτ 3G̃0

ijL
† =

(
G̃Rij G̃Kij

0 G̃Aij

)
, (E.6b)

where τ 1,2,3 denote the Pauli matrices acting in Keldysh space, L = 1/
√

2
(
1 −1
1 1

)
,

and Eq. (E.6b) follows from the definitions (E.2).

For future reference, note also that density operators n̂aijI (t1) located on the

forward or backward branches of the Keldysh contour have the following represen-

tations (suppressing the time argument), for a = F,B:

n̂aijI = ψa†j ψ
a
i = ψ̂

†

jP aψ̂i = ψ̂
†

jI
P aψ̂iI , (E.7a)

P F/B =
1

2
(1± τ 3) , P F/B = Lτ 3P F/BL

† =
1

2
(τ 1 ± 1) . (E.7b)

E.2. Field correlators

Next we consider the “interaction propagators” L̃ij , i.e., correlators involving the

real, bosonic fields Vi that were introduced via the Hubbard-Stratonovich transfor-

mation (B.28a). Below, we shall use Vi as a shorthand for Va(ti, ri), taking it to

be understood that if a = F (or B), then ti resides on the forward (or backward)

parts of the Keldysh contour. The basic correlators

L̃<ij ≡ ie2

~
〈VjVi〉V ≡ L̃>ji , (E.8)

are averaged over all field configurations according to Eq. (B.29d). The definitions

of the correlators L̃Tij , L̃Tij , L̃Rij , L̃Aij , L̃Kij and L̃cij in terms of L̃<ij and L̃>ij are identical

nA. I. Larkin and Yu. N. Ovchinnikov, Zh. Eksp. Theor. Fiz. 68, 1915 (1975) [Sov. Phys. – JETP
41, 960 (1975)]. This is also the form used by Rammer and Smith (see footnote m).
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to those of the corresponding electronic G̃ij ’s in terms of G̃<ij and G̃>ij in Eqs. (E.2).

The matrix representation L̃ij of the contour-ordered interaction propagator L̃cij ,
with matrix elements

L̃
aa′

ij ≡ ie2

~
〈TcVaiVa′j〉V = L̃

a′a
ji , (E.9a)

takes a form analogous to Eq. (E.5), namely:

L̃ij ≡
ie2

~

(
〈VFiVFj〉V 〈VFiVBj〉V
〈VBiVFj〉V 〈VBiVBj〉V

)
=

(
L̃Tij L̃<ij
L̃>ij L̃Tij

)
. (E.9b)

Following AAG,18,19 we shall use the transformation L̃ = 1/
√

2
(
1 1
1 −1

)
to obtain a

tridiagonal representation, reminiscent of Eq. (E.6b),

L̃ij ≡ L̃L̃ijL̃
†

=

(
L̃Kij L̃Rij
L̃Aij 0

)
=
ie2

~




2〈V+iV+j〉V 〈V+iV−j〉V

〈V−iV+j〉V
1

2
〈V−iV−j〉V


 (E.10a)

= e2

(
2iĨij −R̃ij
−R̃ji 0

)
, (E.10b)

with matrix elements to be denoted by L̃
αα′

ij , where α, α′ take the values ±. The

last equality of Eq. (E.10a) was obtained by using





√
2 0

0
1√
2




(
V+i

V−i

)
= L̃

(
VFi

VBi

)
, (E.11)

[cf. Eq. (B.37)] to rewrite L̃L̃ijL̃
†

in terms of the correlators e2〈VαiVα′j〉V . The

relations (E.10a) are general. The explicit expressions for these correlators given

by Eq. (E.10b), which are specific for the present model, follow from Eq. (B.74a).

[Incidentally, comparing Eqs. (E.10a) and (E.10b) proves Eq. (B.74b]. Using the

explicit forms for R̃ij and Ĩij of Eqs. (B.75), it can easily be checked that

(L̃R/Aij )∗ = L̃R/Aij = L̃A/Rji , (L̃Kij )∗ = −L̃Kij = −L̃Kji , (E.12)

and that their Fourier transforms w.r.t. tij satisfy the relations

L̃Rij (ω) = L̃Rji(ω) = L̃R∗
ij (−ω) = L̃A∗

ij (ω) , L̃Kij (ω) = L̃Kji (ω) = −L̃K∗
ij (ω) , (E.13)

L̃Kij (ω) = coth(~ω/2T )[L̃Rij (ω) − L̃Aij (ω)] . (E.14)

Equation (E.14) [cf. Eq. (B.71)] has the form required by the fluctuation-dissipation

theorem.

Explicit expressions for the interaction propagators are most readily written

down in the Fourier representation. For disordered metals, where small frequencies
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and wave numbers dominate, we obtain from L̄R = −e2R̄ and (B.76) the following

relations (in agreement with Eq. (5.8) of AAG18,19):

L̄Rq (ω) ' −Dq
2 − iω

2νDq2
, L̄Kq (ω) = 2i coth(~ω/2T )ImL̄Rq (ω) . (E.15)

E.3. Keldysh perturbation theory

In this section, we recall how the Feynman rules for Keldysh perturbation theory

are derived, and use them to obtain an expression for the self energy Σ̃ of the

Keldysh electron Green’s function [Eq. (E.24)].

In the Keldysh approach, expectation values of the form occuring in Eq. (B.27b)

are written as follows (following Rammer and Smith, see footnote m):

〈Ô(t)〉K ≡ 〈ÛIB(t, t0)ÔI (t)ÛIF (t, t0)〉0
〈ÛIB(t, t0)ÛIF (t, t0)〉0

=
〈TcŜciŜcṽÔI(t)〉0

〈TcŜciŜcṽ〉0
, (E.16a)

Ŝci ≡ Tce−
i
~

∫
c
dt3ĤiI (t3) , Ŝcṽ ≡ Tce−

i
~

∫
c
dt3v̂I (t3) , (E.16b)

where
∫
c
dt1 and Tc indicate integration and time ordering along the familiar

Keldysh contour [ĤiI and v̂ are defined in Eqs. (B.10) and (B.27d)]. In Eq. (E.16a),

the operator ÔI(t) can be written as either ÔFI (t) or ÔBI (t), where the superscripts

indicate that the operator resides on the upper or lower branch of the Keldysh

contour, since the contribution from the portion of the Keldysh contour from t to

∞ cancels that from ∞ back to t. Consequently, we can also represent ÔI(t) as

1/2[ÔFI + ÔBI ](t), which turns out to be most convenient and will be used hence-

forth. For example, the reduced single-particle matrix ρ̃11′(t, t0) of Eq. (B.27b) can

be written aso

ρ̃11′(t1, t0) =
1

2
〈n̂F11′I + n̂B11′I〉K =

〈
ψ̂

†

1′
1/2τ 1ψ̂

1

〉

K
= −i~ TrK

[
1

2
τ 1G̃full

11′

]
,

(E.17)

Here TrK denotes a trace over Keldysh indices, G̃full
11′ = 〈 ˆ̃Gij〉K (and likewise ˆ̃

Gns
11′ =

〈 ˆ̃G11′〉K,ns, which will occur below, too), ˆ̃
Gij has the same matrix structure as in

Eq. (E.6a), and the superscript “full” (or “ns”) indicates that the average is to

be evaluated in the presence of the full interaction and including (or excluding)

all external perturbations, i.e., with 〈 〉K (or 〈 〉K,ns) instead of 〈 〉0. As a check,

we note that in the absence of interactions, Eq. (E.17) reduces to −i~1/2G̃K11′ =

1/2〈ψ†
1′ψ1 − ψ1ψ

†
1′〉0, which is equal to the desired result of 〈ψ†

1′ψ1〉0 (recall that

ψ†
1′ and ψ1 anticommute, since x1′ is equated to x1 only at the very end of the

calculation).

oAn alternative but equivalent form to Eq. (E.17) is often used (e.g., by AAG,18,19 Eq. (5.1), where

the factor 2 in front of τ̂1 is a typo), namely ρ̃
11′

= 〈ψ̂
†

1′
(τ 1 −1)/2ψ̂

1
〉K = −i~[(τ 1 −1)/2G̃full

11′
],

where it is to be understood that t1′ = t1 + 0+.
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By writing
∫
c dt3v̂I (t3) =

∫∞

t0
dt3[v̂

F
3I − v̂B3I ], and switching to the Keldysh rep-

resentation of Eq. (E.6a), Scṽ takes the form

Ŝcṽ = Tce−
i
~

∫
∞

t0
dt3

∫
dx3,3̄v̂33̄(t3) (E.18a)

v̂33̄(t3) ≡ ṽ3̄3(t3)[n̂
F
33̄I − n̂B33̄I ] = ṽ3̄3(t3)ψ̂

†

3̄
1ψ̂

3
. (E.18b)

As a special case of Eq. (E.18b), we note that the external perturbation, Ĥext of

Eq. (B.17), generates vertices of the form

(−i/~)ĥ
ext

22′ = (−i/~)hext
22′ψ̂

†

2′
1ψ̂

2
. (E.19)

To linear order in ĥext, where each fermion line is simply decorated by the insertion

of a single external vertex, we thus have the Feynman rule that each full G̃full
ij is to

be replaced by

hext
22′ 〈 ˆ̃Gi2′1 ˆ̃

G2j〉K,ns

[
→ iE(ω0) · j22′

ω0
〈 ˆ̃Gi2′1 ˆ̃

G2j〉K,ns

]
, (E.20)

where the subscript “ns” denotes “no (external) sources”, and the term in brackets

indicates the form which hext
22′ assumes under Fourier transformation, if we use the

gauge of Eq. (B.21b).

For any expectation value of the form 〈Ô(t)〉K , the interaction term ĤiI in Ŝci
can be decoupled using the Hubbard-Stratonovitch transformation of Eqs. (B.28),

just as in Sec. B.3, using the fields VF and VB for the forward and backward branches

of the Keldysh contour, respectively. One then readily finds that 〈Ô(t)〉K can be

expressed as follows as a functional average over all fields VF/B :

〈ÔI (t)〉K = 〈OV (t, t0)〉V (E.21a)

OV (t, t0) ≡
〈Tc ŜcV ŜcṽÔI (t)〉0

Z(t, t0)
, (E.21b)

Z(t, t0) ≡ 〈TcŜcV Ŝcṽ〉0 , (E.21c)

ŜcV = Tce−
i
~

∫
∞

t0
dt3

∫
dx3V̂ 3 , (E.21d)

V̂ 3 ≡ e[n̂F33′VF (r3) − n̂B33′VB(r3)]

= e[ψ̂
†

3′
(1V+3 + 1

2τ
1V−3)ψ̂3

] . (E.21e)

Here the functional average 〈 〉V over all field configurations is defined, as before,

by Eqs. (B.29d), where the functional Z occuring in Eq. (B.29e) is now given by

Eq. (E.21c).

To obtain an perturbation expansion within the Keldysh approach, one expands

ŜcV in powers of (−i/~)V̂ 3, which thus serves as a basic interaction vertex, and

then applies Wick’s theorem to the fermion fields. In the nth order term, there

are n! equivalent ways to connect the n vertices with n fermion lines of the type
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Fig. E.1. Feynman diagrams for the interaction propagator [Eq. (E.22)] and the correlators J̃FF ,
J̃BB and J̃FB+BF [Eqs. (E.28)] that give the leading correction to the conductivity due to
electron-electron interaction. Solid lines denote matrix Green’s functions G̃0

ij , wavy lines inter-

action propagators L̃
αα′

ij , and the symbols α and α′ the vertices γα and γα′

. Arrows point from
the second to the first index of propagators.

〈ψ̂
i
ψ̂

†

j
〉0 = i~G̃

0

ij , yielding a combinatorical factor of (i~)nn! which cancels the

(−i/~)n/(n!) from the expansion of the exponent of ŜcV . Next, the average 〈 〉V
over all field configurations is to be performed, which yields contractions between

the interaction fields pairs of vertices. These contractions have the form

〈V̂ iV̂ j〉V = −1

2
i~
∑

αα′

ψ̂
†

i′
γαψ̂

i
L̃
αα′

ij ψ̂
†

j′
γα

′

ψ̂
j
, (E.22)

where we introduced the “vertex matrices” γ+ = 1 and γ− = τ 1, the field propaga-

tor in the Keldysh representation L̃
αα′

ij is given by Eqs. (E.10), and the Feynman di-

agram corresponding to Eq. (E.22) is the leftmost graph in Fig. E.1. Equation (E.22)

implies the following Dyson equation (cf. Eq. (5.6) of AAG18,19),

G̃full
ij = G̃0

ij +

∫ ∞

t0

dt3dt4

∫
dx3dx4G̃

0
i3Σ̃34G̃

full
4j , (E.23)

where, to lowest order in the interaction, the self-energy is given by

Σ̃34 = −1

2
i~γαG̃0

34γ
α′

L̃
αα′

34 . (E.24)

E.4. Conductivity

In this section, we derive a general expression for conductivity σDC in the Keldysh

approach and expand it to leading order in the interaction propagator. This will

allow us to check the perturbative expansion (C.11) of our influence functional

J̃12′,21′ of Sec. C.3.

We start by using Eq. (E.17) to express the quantum-statistical average of the

current density operator ĴH(t1, r1) of Eq. (B.16) as follows,

〈ĴH(t1, r1)〉K =
∑

σ1

[
j11′ − e2

m
A(t1, r1)

]
(−i~) TrK

[
1

2
τ 1G̃full

11′

]
. (E.25)

Next we expand Eq. (E.25) to first order in ĥext [using Eq. (E.20)], and then

use Eq. (B.20) to calculate σDC; the result has the form of Eq. (B.22b), where
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J̃12′,21′(ω0) therein is given by the Fourier transform w.r.t. t12 of the following

expression:

J̃Keldysh
12′,21′ = ~TrK

[
1

2
τ 1〈 ˆ̃G12′

ˆ̃
G21′〉K,ns

]
. (E.26)

In the absence of electron-electron interactions, this readily reduces to

J̃
(0),Keldysh
12′,21′ =

1

2
~
(
G̃R12′G̃K21′ + G̃K12′G̃A21′

)
= ~

(
G̃R12′G̃<21′ + G̃<12′G̃A21′

)
. (E.27)

The second equality follows from Eq. (E.2g) (with G̃
R/A
ij G̃

A/R
ji = 0) and confirms

Eq. (C.1a).

Let us now obtain the leading correction to σDC due to the electron-electron

interaction. To this end, we have to expand Eq. (E.26) for J̃Keldysh
12′,21′ to second order

in V̂ 3. One readily arrives at the following result [which can also be obtained by

starting directly from Eq. (E.25), expanding G̃full
11′ therein to first order in Σ̃34 using

Eq. (E.23), and then expanding each G̃0
ij in the latter equation to first order in ĥext

using Eq. (E.20)]:

J̃
(2),Keldysh
12′,21′ = −1

2
i~2

∫ ∞

t0

dt3dt4

∫
dx3dx4(J̃FF + J̃BB + J̃BFFB ) ,

J̃FF =
∑

αα′

TrK

[
1

2
τ 1G̃0

13γ
αG̃0

34γ
α′

G̃0
42′G̃0

21′ L̃
αα′

34

]
, (E.28a)

J̃BB =
∑

αα′

TrK

[
1

2
τ 1G̃0

12′G̃0
23γ

αG̃0
34γ

α′

G̃0
41′L̃

αα′

34

]
, (E.28b)

J̃BFFB =
∑

αα′

TrK

[
1

2
τ 1G̃0

13γ
αG̃0

32′G̃0
24γ

α′

G̃0
41′L̃

αα′

34

]
. (E.28c)

The correlators J̃FF , J̃BB and J̃BFFB are illustrated in Fig. E.1, and correspond

to self-energy insertions in the upper and lower Keldysh contours, and a vertex

correction, respectively. Multiplying out the Keldysh matrices explicitly, taking the

trace and omitting all terms involving the combinations G̃R34L̃A34 or G̃A34L̃R34, which

vanish (since θ34θ43 = 0), we obtain:

J̃FF =
1

2
G̃R13

[
G̃R34L̃K34 + G̃K34L̃R34

](
G̃R42′G̃K21′ + G̃K42′ G̃A21′

)

+
1

2

[
G̃R13

(
G̃K34L̃K34 + G̃R34L̃R34 + G̃A34L̃A34

)

+ G̃K13
(
G̃A34L̃K34 + G̃K34L̃A34

)]
G̃A42′G̃A21′ , (E.29a)

J̃BB =
1

2

(
G̃R12′G̃K23 + G̃K12′G̃A23

)[
G̃A34L̃K34 + G̃K34L̃A34]G̃A41′
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+
1

2
G̃R12′G̃R23

[(
G̃R34L̃K34 + G̃K34L̃R34

)
G̃K41′

+
(
G̃K34L̃K34 + G̃R34L̃R34 + G̃A34L̃A34

)
G̃A41′

]
, (E.29b)

J̃BFFB =
1

2

(
G̃R32′G̃K24 + G̃K32′G̃A24

)[
G̃A41′G̃R13L̃K34 + G̃K41′G̃R13L̃R34 + G̃A41′G̃K13L̃A34

]

+
1

2
G̃R32′G̃R24

[
G̃K41′G̃R13L̃K34 + G̃A41′G̃R13L̃R34 +

(
G̃K41′G̃K13 + G̃R41′G̃A13

)
L̃A34
]

+
1

2
G̃A32′G̃A24

[
G̃A41′G̃K13L̃K34 + G̃A41′G̃R13L̃A34 +

(
G̃K41′G̃K13 + G̃R41′G̃A13

)
L̃R34
]
.

(E.29c)

Now, terms that involve the combination G̃Ri2′G̃R2j or G̃Ai2′G̃A2j contribute to the so-

called interaction corrections, and do not contribute to “decoherence”. Hence, we

retain only the first lines of Eqs. (E.29) henceforth. For these, we use the identity

[cf. (E.2g)]

1

2
(G̃RG̃K + G̃KG̃A) = G̃RG̃< + G̃<G̃A +

1

2
(G̃RG̃R − G̃AG̃A) (E.30)

and drop the last term, for the same reason. The remaining terms then take the

following form:

J̃FF = G̃R13
[
G̃R34L̃K34 + G̃K34L̃R34

](
G̃R42′G̃<21′ + G̃<42′G̃A21′

)
(E.31a)

J̃BB =
(
G̃R12′G̃<23 + G̃<12′G̃A23

)[
G̃A34L̃K34 + G̃K34L̃A34

]
G̃A41′ (E.31b)

J̃BFFB =
(
G̃R32′G̃<24 + G̃<32′G̃A24

)[
G̃A41′G̃R13L̃K34 + G̃K41′G̃R13L̃R34 + G̃A41′G̃K13L̃A34

]
. (E.31c)

These expressions agree with the expansion (C.11) we obtained from the influence

functional approach, as can be seen by relabelling 3 ↔ 4 in some terms. [J̃BFFB here

accounts for both J̃BF and J̃FB there.]

Appendix F. Diagrammatic Disorder Averaging

In this appendix we summarize, for reference purposes, some standard and well-

known conventions and results used for diagrammatically performing disorder av-

erages, using notations summarized at the beginning of Appendix B.

F.1. Definitions, standard results and useful tricks

To perform the disorder averages, we take the impurity potential to be short-ranged,

Vimp(r) = vimp

∑
i δ(r−Ri), (vimp has units of energy times volume), represent the

fermion fields as ψ̂σ(t, r) = Vol−1/2∑
p e

ip·rcp(t), and Fourier transform as follows:

G̃
R/A
ij = G̃R/A(tij , xi, xj)
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≡ δσiσj

∫
dε

2π
e−iεtij

1

Vol

∑

pipj

ei(pi·ri−pj ·rj)ḠR/Apipj
(ε) . (F.1)

Using standard diagrammatic techniques, the disorder-averaged single-particle

propagator is found to have the form [Fig. F.1(a)]:

〈
Ḡ
R/A
p′p (ε)

〉
dis

= δpp′ ḠR/Ap (ε) , (F.2a)

ḠR/Ap (ε) =

∫
dtij

∫
drije

−iεtijeip·rij
〈
G̃
R/A
ij

〉
dis

=
1

~ε− ξp ± i~/2τel
. (F.2b)

Here τel = ~/(2πνcimpv
2
imp) is the elastic scattering time, cimp the impurity concen-

tration, ξp = p2
~

2/2m− εF, and calligraphic symbols will be used throughout for

disorder-averaged quantities. The corresponding position-time expression, found by

inverse Fourier transforming, is:

G̃R/Aij (t) =

∫
(dp)eip·rij

∫
(dε)e−iεtḠR/Ap (ε) , (F.2c)

= ∓ i

~
θ(±t)

( m

i2π~t

)d/2
exp

[
imr2

ij

2~t

]
eiεFt/~e−|t|/2τel . (F.2d)

The disorder-averaged products 〈G̃RG̃A〉dis have the form [Fig. F.1(b)],

〈
Ḡ
R/A
p′p (ε)Ḡ

R/A
p̄′p̄ (ε̄)

〉
dis

= δp′,pδp̄′,p̄ḠR/Ap (ε)ḠR/Ap̄ (ε̄) , (F.3a)

〈
ḠRp′p(ε)Ḡ

A
p̄′p̄(ε̄)

〉
dis

= δp′,pδp̄′,p̄ḠRp (ε), ḠAp̄ (ε̄)

+ δp′+p̄′,p+p̄ḠRp′(ε)ḠRp (ε)ḠAp̄′(ε̄)ḠAp̄ (ε̄)

×
D̄0
p+p̄′(ε− ε̄) + C̄0

p+p̄(ε− ε̄)

Vol 2πντel2/~
, (F.3b)

C̄0
q(ω) and D̄0

q(ω) being the bare (i.e., without interactions) Cooperon and diffuson,

respectively. Figure F.1 summarizes the standard calculations of C̄0
q(ω) and D̄0

q(ω),

and of the diffusion-dressed interaction vertex Γ̄q(ω) and polarization bubble χ̄q(ω),

which is defined as the Fourier transform of Eq. (B.65a):

〈
χ̄q(ω)

〉
dis

= −i2e2~
∫

(dε)(dp)
〈
ḠRp+q(ε+ ω)Ḡ<p (ε)

+ Ḡ<p+q(ε+ ω)ḠAp (ε)
〉

dis
(F.4a)

' −i2e2~
∫

(dε)(dp)
〈
[−ωn′

0(ε)]ḠRp+q(ε+ ω)ḠAp (ε)

−n0(ε)
[
ḠRp+q(ε+ ω)ḠRp (ε) − ḠAp+q(ε+ ω)ḠAp (ε)

]〉

dis
. (F.4b)
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Fig. F.1. The building blocks of diagrammatic perturbation theory: (a) Basic definitions for

the electron lines G̃
R/A
ij and Ḡ

R/A
p (ε), impurity lines, the function Π̄q(ω) of Eq. (F.5a), and the

interaction lines L̃ij or L̄q(ω) of Eq. (B.74b). For all correlators, arrows point from the second to the
first indix. creation to annihilation operators] Internal impurity momenta are to be integrated over
with

∫
(dk), as in Π̄q(ω). (b) Eq. (F.3b). (c) The bare Cooperon C̄0

q(ω) [Eq. (F.5b)] and bare diffuson
D̄0
q(ω) [Eq. (F.5c)]; (d) the diffuson-dressed vertex Γ̄q(ω) [Eq. (F.5d)] and (e) polarization bubble

χ̄q(ω) [Eq. (F.5e)]. For each of Π̄q(ω), C̄0
q(ω) and Γ̄q(ω), the frequency argument ω is defined as

the frequency of the corresponding retarded Green’s function minus that of the advanced one.
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The results are:

Π̄q(ω) =

∫
(dk)ḠRk (ε+ ω)ḠAq−k(ε) =

2πντel
~

[1 − τel(Dq
2 − iω) + · · ·] , (F.5a)

C̄0
q(ω) =

τel
1 − Π̄q(ω)/(2πντel/~)

=
1

Dq2 − iω + γH
+ · · · , (F.5b)

D̄0
q(ω) =

τel

1 − Π̄q(ω)/(2πντel/~)
=

1

Dq2 − iω
+ · · · , (F.5c)

Γ̄q(ω) = 1 +
Π̄q(ω)D̄0

q(ω)

2πντel2/~
=

1

τel(Dq2 − iω)
+ · · · , (F.5d)

χ̄q(ω) = −i2e2
[

ων

Dq2 − iω
− iν

]
= − q

2σDrude
DC

Dq2 − iω
+ · · · . (F.5e)

Here D = v2
F τel/d is the diffusion constant in d = 3 or 2 dimensions, γH is a

magnetic-field cutoff and the dots indicate subleading terms that are small in ωτel �
1 and qlel � 1.

For convenience, we also summarize here some results that are useful for evalu-

ating momentum integrals that arise in diagrammatic perturbation theory. Usually,

the energy parameter ~ε of the disorder-averaged Greens’ functions ḠR/Ap (ε) is con-

fined to the vicinity of εF, typically by the presence of a factor −∂εn0(~ε) in an∫
dε integration, so that terms of order ~ε/εF can be neglected. [The second term

of Eq. (F.4b) does not contain a factor −∂εn0, but one can be generated by inte-

grating by parts.] The explicit form (F.2) for ḠR/Ap (ε) then implies the following

“identities”:
∫

(dp)

2πντel/~
ḠRp (ε)ḠAp (ε) = 1 ,

∫
(dp)

2πντel/~
ḠR/Ap (ε)ḠR/Ap (ε) = 0 , (F.6a)

∫
(dp)

2πντel/~

[
ḠR/Ap (ε)

]m[ḠA/Rp (ε)
]n

=

(−iτ
~

)m−1(
iτ

~

)n−1
(
m+ n− 2

m− 1

)
. (F.6b)

Furthermore, in the limit of small frequencies (ω, ω̄ � 1/τel) and wavenumbers

(q2, q̄2 � 1/Dτel), integrals of the following kind can be evaluated by a systematic

expansion in the small parameters, combined with repeated use of Eqs. (F.6):
∫

(dp)

2πντel/~
ḠR/Ap (ε)ḠA/Rp+q (ε+ ω) = 1 − τel[Dq

2 ± iω] + · · · , (F.7a)

~

τel

∫
(dp)

2πντel/~
ḠR/Ap (ε)ḠA/Rp+q (ε+ ω)ḠA/Rp+q̄ (ε+ ω̄)

= ±i{1− τel[D(q + q̄)2 ± i(ω + ω̄)]} + · · · , (F.7b)
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~
2

τel2

∫
(dp)

2πντel/~

[
ḠR/Ap (ε)

]2ḠA/Rp+q (ε+ ω)ḠA/Rp+q̄ (ε+ ω̄)

= 2 − τel[4D(q + q̄)2 ± 3i(ω + ω̄)] + · · · , (F.7c)

~
2

τel2

∫
(dp)

2πντel/~
ḠR/Ap (ε)ḠR/Ap+q′(ε+ ω′)ḠA/Rp+q (ε+ ω)ḠA/Rp+q̄ (ε+ ω̄)

= 2 − τel[D[4(q + q̄)2 + 4(q′)2 − 6q′ · (q + q̄)]

± 3i(ω + ω̄ − ω′)] + · · · . (F.7d)

F.2. Cooperon self energy

In this section, we provide some details for how the Cooperon self energy can be

calculated by performing the disorder average diagrammatically. As a starting point,

we use Eqs. (B.88), which we derived in Sec. B.6.1 from the influence functional

approach, but which are equivalent to the standard Keldysh expressions following

from Eq. (E.24). According to Eqs. (B.88), there are four self-energy contributions

to the Cooperon self energy, which we write as:

Σ̄self
q (ω) ≡ 1

~

∫
dω̄

2π

∫
(dq̄)

[
Σ̄IFF + Σ̄IBB + Σ̄RFF + Σ̄RBB

]
. (F.8)

The diagrams for Σ̄Iaa are depicted in Fig. F.2(b), those for Σ̄Raa in Figs. F.2(c)–

F.2(f) (which correspond one-to-one to Figs. 2(b)–2(f) of AAV20). Starting from

Eq. (B.88), the corresponding algebraic expressions can be written as:

Σ̄IFF = −1

2
iL̄Kq̄ (ω̄)C̄0

q−q̄(ω − ω̄)Y
(1)
F

Σ̄IBB = −1

2
iL̄Kq̄ (ω̄)C̄0

q−q̄(ω + ω̄)Y
(1)
B ,

Σ̄RFF = −1

2
iL̄Rq̄ (ω̄) tanh[~(ε+ ω − ω̄)/2T ]

×
{
C̄0
q−q̄(ω − ω̄)Y

(1)
F − τelΓ̄

2
q̄(ω̄)

4∑

n=2

Y
(n)
F

}
,

Σ̄RBB = −1

2
iL̄Aq̄ (ω̄) tanh[~(ε− ω̄)/2T ]

×
{
−C̄0

q−q̄(ω + ω̄)Y
(1)
B + τelΓ̄

2
−q̄(−ω̄)

4∑

n=2

Y
(n)
B

}
.

(F.9)

In the expressions for Σ̄Raa, the minus signs before Y
(2)
F , Y

(3)
F , Y

(4)
F and Y

(1)
B arise

from the minus sign in ḠK = tanh( ) [ḠR − ḠA], and the Y ’s represent integrals
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Fig. F.2. (a) Dyson equation [Eq. (12)] for the Cooperon, for the case that the Cooperon self
energy contains only self-energy contributions. The latter are shown in diagrams (b) to (f), which

depict how to perform the disorder average of the various contributions Σ̄
I/R
aa′

to the Cooperon self

energy, leading to Eqs. (F.9) and (F.10a). Diagrams (b) depict Σ̄I
FF/BB

; the diagrams (c) + (d)

+ (e) + (f) depict Σ̄R
FF/BB

, the four contributions corresponding to the terms in Eqs. (F.10) that

contain Y
(1)
a , Y

(2)
a , Y

(3)
a and Y

(4)
a , respectively. [To avoid cluttering the figure with factors of 1/2,

the energy and momentum labels ε, ω and q used here were assigned in a less symmetrical way
between upper and lower lines than in Fig. C.2(c); to transcribe the expressions used in this section
into the notation used there, make the replacements (ε+ω)here → (ε+1/2ω), p′here → (p1+1/2q),
phere → (p2 + 1/2q), and identify (E + 1/2Ω1)there = (E + 1/2Ω2)there = ε + 1/2ω.]
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over internal momenta, that can be performed using variations of Eqs. (F.7):

Y
(1)
F =

~

τel

∫
(dp)

2πντel/~
ḠAq−p(ε)ḠRp (ε+ ω)ḠRp−q̄(ε+ ω − ω̄)

× ~

τel

∫
(dp′)

2πντel/~
ḠAq−p′(ε)ḠRp′−q̄(ε+ ω − ω̄)ḠRp′(ε+ ω)

= (−i)2{1 − τel[D(2q − q̄)2 − i(2ω − ω̄)] + · · ·}2 , (F.10a)

Y
(2)
F =

~
2

τel2

∫
(dp)

2πντel/~

[
ḠRp (ε+ ω)

]2
, ḠAp−q̄(ε+ ω − ω̄)ḠAq−p(ε)

= 2 − τel[4D(q + q̄)2 − 3i(ω + ω̄)] , (F.10b)

Y
(3)
F =

~

τel

∫
(dp)

2πντel/~
ḠRp (ε+ ω)ḠAp−q̄(ε+ ω − ω̄)ḠAq−p(ε)

× ~

τel

∫
(dp′)

2πντel/~
ḠRp′(ε+ ω)ḠAp′−q̄(ε+ ω − ω̄)ḠAq−p′(ε)

= (i)2{1− τel[D(q + q̄)2 − i(ω + ω̄)] + · · ·}2 (F.10c)

Y
(4)
F =

~
2

τel2

∫
(dp)(dp′)

(2πντel/~)2
ḠAq−p(ε)[ḠRp (ε+ ω)]2

× ḠAp′−q̄(ε+ ω − ω̄)[ḠRp′(ε+ ω)]2

= (−i)2{1 − τel[D(2q)2 − i2ω] + · · ·}2{1 − τel[D(2q̄)2 − i2ω̄] + · · ·}2 (F.10d)

Performing a similar set of integrals for the Y
(n)
B ’s, we readily find that Y

(n)
B (ω̄) =

Y
(n)
F (−ω̄). Note that the sums

∑4
n=2 Y

(n)
F/B , which are associated with the so-called

“Hikami-box” diagrams of Figs. F.2(d)–F.2(f), add up to zero in leading order,

which is why the next order had to be included. Finally, the results for Σ
I,self

and

Σ
R,self

, given by Eqs. (13b) in the main text, are obtained by inserting Eqs. (F.10)

into Eqs. (F.9) and (F.8), and making the replacement εhere → ω/2 (cf. caption of

Fig. F.2).
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