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Abstract We have rederived the controversial influence functional approachof Golubev
and Zaikin (GZ) for interacting electrons in disordered metals in a way that allows
us to show its equivalence, before disorder averaging, to diagrammaticKeldysh
perturbation theory. By representing a certain Pauli factor(δ̃ − 2ρ̃0) occuring
in GZ’s effective action in the frequency domain (instead of the time domain, as
GZ do), we also achieve a more accurate treatment of recoil effects. With this
change, GZ’s approach reproduces, in a remarkably simple way, thestandard,
generally accepted result for the decoherence rate.
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1. Introduction

A few years ago, Golubev and Zaikin (GZ) developed an influence functional
approach for describing interacting fermions in a disordered conductor. Their
key idea was as follows: to understand how the diffusive behavior of a given
electron is affected by its interactions with other electrons in the system, which
constitute its effective environment, the latter should be integrated out, leading
to an influence functional, denoted bye−(iS̃R+S̃I), in the path integral

∫
D̃′R

describing its dynamics. To derive the effective action(iS̃R + S̃I), GZ devised
a strategy which, when implemented with sufficient care,properly incorporates
the Pauli principle– this is essential, since both the particle and its environment
originate from the same system of indistinghuishable fermions, a feature which
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116 FUNDAMENTAL PROBLEMS OF MESOSCOPIC PHYSICS

makes the present problem conceptually interesting and sets it apart fromall
other applications of influence functionals that we are aware of.

GZ used their new approach to calculate the electron decoherence rateγϕ(T )
in disordered conductors, as extracted from the magnetoconductance inthe
weak localization regime, and found it to be finite at zero temperature [1, 2, 3,
4, 5, 6],γGZ

ϕ (T → 0) = γ0,GZ
ϕ , in apparent agreement with some experiments

[7]. However, this result contradicts the standard view, based on the work of
Altshuler, Aronov and Khmelnitskii (AAK) [9], thatγAAK

ϕ (T → 0) = 0, and
hence elicited a considerable and ongoing controversy [8]. GZ’s workwas
widely questioned, for example in Refs. [10, 11, 12, 13, 14, 15], with themost
detailed and vigorous critique coming from Aleiner, Altshuler and Gershenzon
(AAG) [16] and Aleiner, Altshuler and Vavilov (AAV) [17, 18], but GZ rejected
each critique [3, 4, 5, 8] with equal vigor. It is important to emphasize that the
debate here is about a well-defined theoretical model, and not about experiments
which do or do not support GZ’s claim.

The fact that GZ’s final results forγGZ
ϕ (T ) have been questioned, however,

does not imply that their influence functional approach, as such, is fundamen-
tally flawed. To the contrary, we show in this paper that it is sound in principle,
and that the standard resultγAAK

ϕ (T ) can be reproduced using GZ’s method,
provided that it is applied with slightly more care to correctly account for recoil
effects (i.e. the fact that the energy of an electron changes when it absorbs or
emits a photon). We believe that this finding conclusively resolves the con-
troversy in favor of AAK and company; hopefully, it will also serve to revive
appreciation for the merits of GZ’s influence functional approach.

The premise for understanding howγAAK
ϕ can be reproduced with GZ’s meth-

ods was that we had carried out a painfully detailed analysis and rederivation
of GZ’s calculation, with the aim of establishing to what extent their method is
related to the standard Keldysh diagrammatic approach. As it turned out, the
two methods are essentially equivalent, and GZ obtained unconventional results
only because a certain “Pauli factor”(δ̃ − 2ρ̃0) occuring inS̃R was not treated
sufficiently carefully, wherẽρ0 is the single-particle density matrix. That their
treatment of this Pauli factor was dubious had of course been understood and
emphasized before: first and foremost it was correctly pointed out in [16] that
GZ’s treatment of the Pauli factor caused their expression forγGZ

ϕ to aquire an

artificial ultraviolet divergence, which then produces the termγ0,GZ
ϕ , whereas

no such divergence is present in diagrammatic calculations. GZ’s treatment
of (δ̃ − 2ρ̃0) was also criticized, in various related contexts, by several other
authors [10, 11, 14, 15, 17]. However, none of these works (including our own
[14], which, in retrospect, missed the main point, namely recoil) had attempted
to diagnose the nature of the Pauli factor problemwith sufficient precision to
allow a successful remedy to be devised within the influence functional frame-
work.
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This will be done in the present paper. Working in the time domain, GZ
represent(δ̃ − 2ρ0(t)) as1 − 2n0

[
h̃0(t)/2T

]
, wheren0 is the Fermi function

andh̃0(t) the free part of the electron energy. GZ assumed thath̃0(t) does not
change during the diffusive motion, because scattering off impurities is elastic.
Our diagnosis is that this assumptionunintentionally neglects recoil effects(as
first pointed out in [10]), because the energy of an electron actually does change
at each interaction vertex, i.e. each time it emits or absorbs a photon. The remedy
(not found in [10]) is to transform from the time to the frequency domain, in
which (δ̃ − 2ρ̃0) is represented by1 − 2n0[~(ε̄ − ω̄)] = tanh[~(ε̄ − ω̄)/2T ],
where~ω̄ is the energy change experienced by an electron with energy~ε̄ at
an interaction vertex. Remarkably, this simple change of representation from
the time to the frequency domain is sufficient to recoverγAAK

ϕ . Moreover, the
ensuing calculation is free of ultraviolet or infrared divergencies, andno cut-offs
of any kind have to be introduced by hand.

The present paper has two main aims: firstly, to concisely explain the nature
of the Pauli factor problem and its remedy; and secondly, to present a transparent
calculation ofγϕ, using only a few lines of simple algebra. (Actually, we
shall only present a “rough” version of the calculation here, which reproduces
the qualitative behavior ofγAAK

ϕ (T ); an improved version, which achieves
quantitative agreement with AAK’s result for the magnetoconductance [with
an error of at most 4% for quasi-1-D wires], will be published separately [19]).

We have made an effort to keep the paper reasonably short and to the point,
and not to dwell on technical details of interest only to the experts. Regrettably,
this has had the consequence that the present paper is not fully self-contained: it
builds on an extensive and very detailed analysis that could not and has not been
included here. These details have been written up in the form of five lengthy
appendices. Although the present paper is written such that, once one accepts
its starting point [Eqs. (8.1) to Eq. (8.4)], the rest of the discussion can easily be
followed step by step, readers interested in an honest derivation of the starting
point will have to consult the appendices. For those readers (presumably the
majority) with no time or inclination to read lengthy appendices, a concise
appendix at the end of this paper summarizes (without derivations) the main
steps and approximations involved in obtaining the influence functional. We
shall publish the five long appendices B to F separately [20], in the belief that all
relevant details should be publicly accessible when dealing with a controversy,
for the benefit of those willing to “read the fine print”. Below we shall referto
these appendices as though they were a part of the present paper, and briefly
summarize their contents here:

In App. B, we rederive the influence functional and effective action of GZ, fol-
lowing their general strategy in spirit, but introducing some improvements. The
most important differences are: (i) instead of using the coordinate-momentum
path integral

∫
D(RP ) of GZ, we use a “coordinates-only” version

∫
D̃′R,
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since this enables the Pauli factor to be treated more accurately; and (ii), we
are careful to perform thermal weigthing at an initial timet0 → −∞ (which
GZ do not do), which is essential for obtaining properly energy-averaged ex-
pressions and for reproducing perturbative results: the standard diagrammatic
Keldysh perturbation expansion for the Cooperon in powers of the interaction
propagator is generated if,before disorder averaging, the influence functional
is expanded in powers of(iS̃R + S̃I). In App. C we review how a general
path integral expression derived for the conductivity in App. B can be rewritten
in terms of the familiar Cooperon propagator, and thereby related to the stan-
dard relations familiar from diagrammatic perturbation theory. In particular,
we review the Fourier transforms required to get a path integralP̃ ε properly de-
pending on the energy variable~ε relevant for thermal weighting. Appendix D
gives an explicit time-slicing definition of the “coordinates-only” path integral∫
D̃′R used in App. B. Finally, for reference purposes, we collect in Apps. E

and F some standard material on the diagrammatic technique (although this is
bread-and-butter knowledge for experts in diagrammatic methods and available
elsewere, it is useful to have it summarized here in a notation consistent with
the rest of our analysis). App. E summarizes the standard Keldysh approach in
a way that emphasizes the analogy to our influence functional approach,and
App. F collects some standard and well-known results used for diagrammatic
disorder averaging. Disorder averaging is discussed last for a goodreason: one
of the appealing features of the influence functional approach is that most of
the analysis can be performedbeforedisorder averaging, which, if at all, only
has to be performed at the very end.

2. Main results of influence functional approach

We begin by summarizing the main result of GZ’s influence functional ap-
proach. Our notations and also the content of of our some formulas are not
identical to those of GZ, and in fact differ from their’s in important respects.
Nevertheless, we shall refer to them as “GZ’s results”, since we have (re)derived
them (see App. B [20] for details) in the spirit of GZ’s approach.

The Kubo formula represents the DC conductivityσDC in terms of a retarded
current-current correlator〈[ĵ(1), ĵ(2)]〉. This correlator can (within various
approximations discussed in App. B.5.6, B.5.7 and App. B.6.3) be expressed
as follows in terms of a path integral̃P ε representing the propagation of a pair
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of electrons with average energy~ε, thermally averaged over energies:

σDC =
2

d

∫
dx2 j11′ ·j 22′

∫
(dε)[−n′(~ε)]

∫ ∞

0
dτ P̃ 12′,ε

21′,eff(τ) ,

P̃ 12′,ε
21′,eff(τ) = F

∫ RF ( τ
2
)=r1

RF (− τ
2
)=r

2′

B

∫ RB( τ
2
)=r

1′

RB(− τ
2
)=r2

D̃′(R) e
1

~
[i(S̃F

0
−S̃B

0
)−(iS̃R+S̃I)](τ).

(8.1)

The propagator̃P 12′,ε
21′,eff(τ), defined for a given impurity configuration, is written

in terms of a forward and backward path integralF

∫
B

∫
D̃′(R) between the

specified initial and final coordinates and times, which gives the amplitude for
an electron with energy~ε to propagate fromr2′ at time−1

2τ tor1 at 1
2τ , times

the amplitude for it to propagate fromr1′ at time1
2τ tor2 at−1

2τ . We shall call
these the forward and backward paths, respectively, using an indexa = F,B

to distinghuish them.S̃a
0 = S̃

F/B
0 are the corresponding free actions, which

determine which paths will dominate the path integral. The weak localization
correction to the conductivity,σWL

DC , arises from the “Cooperon” contributions to
σDC for which the coordinatesr1, r′

1, r2 andr′
2 all lie close together, and which

feature self-returning random walks through the disordered potential landscape
for pairs of pathsRF/B , with pathB being the time-reversed version of pathF ,
i.e.RF (t3) = RB(−t3) for t3 ∈ (−1

2τ,
1
2τ). The effect of the other electrons

on this propagation is encoded in the influence functionale−(iS̃R+S̃I) occuring
in Eq. (8.1). The effective actioniS̃R + S̃I turns out to have the form [for a
more explicit version, see Eq. (8.A.7) in the appendix]:

{
iS̃R(τ)

S̃I(τ)

}
= −1

2 i
∑

a,a′=F,B

sa

∫ τ
2

− τ
2

dt3a

∫ t3a

− τ
2

dt4a′

{
L̃a′

3a4a′

sa′L̃K
3a4a′

}
. (8.2)

Heresa stands forsF/B = ±1, and the shorthand̃L3a4′a = L̃
[
t3a−t4a′

,Ra(t3a)−
Ra′

(t4a′
)
]

describes, in the coordinate-time representation, an interaction prop-
agator linking two vertices on contoursa anda′. It will be convenient below to
Fourier transform to the momentum-freqency representation, where the propa-
gatorsL̃K andL̃a′

can be represented as follows [(dω̄)(dq̄) ≡ (dω̄ dq̄)/(2π)4]:

L̃K
3a4a′

≡
∫

(dω̄)(dq̄)e
i
(
q̄·

[
Ra(t3a )−Ra′ (t4a′

)
]
−ω̄(t3a−t4a′

)
)

L̃K
q̄ (ω̄) , (8.3a)

L̃a′

3a4a′
≡

{ [
(δ̃ − 2ρ̃0)L̃R

]
3a4F

if a′ = F ,[
L̃A(δ̃ − 2ρ̃0)

]
4B3a

if a′ = B ,
(8.3b)

≡
∫

(dω̄)(dq̄)e
isa′

(
q̄·

[
Ra(t3a )−Ra′ (t4a′

)
]
−ω̄(t3a−t4a′

)
)

L̃a′

q̄ (ω̄) . (8.3c)
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Figure 8.1. Structure of vertices on the forward or backward contours of Keldyshperturbation
theory. F: the combinations̃GK

iF 4F
L̃

R
34F

andG̃R
iF 4F

L̃
K
34F

occur if vertex 4 lies on the upper
forward contour. B: the combinations̃LA

4B3G̃
K
4BjB

andL̃K
4B3G̃

A
4BjB

occur if vertex 4 lies on
the lower contour. Arrows point from the second to first indices of propagators.

[Note the signsa′ in the Fourier exponential in Eq. (8.3c); it reflects the opposite
order of indices in Eq. (8.3b), namely 34 forF vs. 43 forB.] HereL̃K is the
Keldysh interaction propagator, whilẽLF/B , to be used when timet4a′

lies on
the forward or backward contours, respectively, represent “effective” retarded
or advanced propagators, modified by a “Pauli factor”(δ̃ − 2ρ̃0) (involving
a Dirac-deltaδ̃ij and single-particle density matrix̃ρ0

ij in coordinate space),

the precise meaning of which will be discussed below.L̃K,R,A
q̄ (ω̄) denote the

Fourier transforms of the standard Keldysh, retarded, or advanced interaction
propatators. For the screened Coulomb interaction in the unitary limit, they are
given by

LR
q̄ (ω̄) = [LA

q̄ (ω̄)]∗ = −
E0

q̄ − iω̄

2νE0
q̄

= −
[D0

q̄(ω̄)]−1

2νE0
q̄

, (8.4a)

LK
q̄ (ω̄) = 2 i coth(~ω̄/2T ) Im[LR

q̄ (ω̄)] , (8.4b)

C0
q̄(ω̄) =

1

Eq̄ − iω̄
, D0

q̄(ω̄) =
1

E0
q̄ − iω̄

, (8.4c)

E0
q̄ = Dq̄2 , Eq̄ = Dq̄2 + γH , (8.4d)

where, for later reference, we have also listed the Fourer transforms of the bare
diffusonD0

and CooperonC0
(whereγH is the dephasing rate of the latter in

the presence of a magnetic field,D the diffusion constant andν the density of
states per spin). Finally,̃La′

q̄ (ω̄) in Eq. (8.3c) is defined as

L̃F/B
q̄ (ω̄) = tanh[~(ε− ω̄)/2T ] L̃R/A

q̄ (ω̄) , (8.4e)

where~ε is the same energy as that occuring in the thermal weighting factor
[−n′(~ε)] in the first line of Eq. (8.1).

Via the influence functional, the effective action (8.2) concisely incorporates
the effects of interactions into the path integral approach.S̃I describes the
classicalpart of the effective environment, and if one would replace the factor
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coth(~ω̄/2T ) in L̃K
q̄ (ω̄) by2T/~ω̄ (as is possible for high temperatures) it cor-

responds to the contribution calculated by AAK [9]. WithS̃R, GZ succeeded to
additionally also include the quantum part of the environment, and in particular,
via the Pauli factor(δ̃ − 2ρ̃0), to properly account for the Pauli principle.

Casual readers are asked to simply accept the above equations as starting
point for the remainder of this paper, and perhaps glance through App.A to
get an idea of the main steps and approximations involved. Those interested
in a detailed derivation are referred to App. B (whereS̃R/I are obtained in
Sec. B.5.8). It is also shown there [Sec. B.6] that the standard results ofdi-
agrammatic Keldysh perturbation theory can readily be reproduced from the
above formalism by expanding the influence functionale−(iS̃R+S̃I)/~ in pow-
ers of(iS̃R+S̃I)/~. For present purposes, simply note that such an equivalence
is entirely plausible in light of the fact that our effective action (8.2) is linear
in the effective interaction propagators̃L, a structure typical for generating
functionals for Feynman diagrams.

3. Origin of the Pauli factor

The occurence of the Pauli factor(δ̃ − 2ρ̃0) in S̃R was first found by GZ in
precisely the form displayed in the position-time representation of the effective
action used in Eq. (8.2). However, their subsequent treatment of this factor
differs from ours, in a way that will be described below. In particular, they did
not represent this factor in the frequency representation, as in our Eq. (8.4e),
and this is the most important difference between our analysis and theirs.

The origin of the Pauli factor in the form given by our Eq. (8.4e) can easily
be understood if one is familiar with the structure of Keldysh perturbation
theory. [For a detailed discussion, see Sec. B.6.2.] First recall two exact
relations for the noninteraction Keldysh electron propagator: in the coordinate-
time representation, it contains a Pauli factor,

G̃K
ij =

∫
dxk (G̃R − G̃A)ik(δ̃ − 2ρ̃0)]kj =

∫
dxk (δ̃ − 2ρ̃0)ik(G̃

R − G̃A)kj

(8.5a)

which turns into atanh in the coordinate frequency representation:

G̃K
ij (ω̄) = tanh(~ω̄/2T )

[
G̃R

ij (ω̄) − G̃A
ij (ω̄)

]
. (8.5b)

Now, in the Keldysh approach retarded or advanced interaction propagators
always occur [see Fig.8.1] together with Keldysh electron propagators,in the
combinationsG̃K

iF 4F
L̃R

34F
or L̃A

4B3G̃
K
4BjB

where the indices denote coordinates
and times. [Likewise, the Keldysh interaction propagators always come in the
combinationsG̃R

iF 4F
L̃K

34F
or L̃K

4B3G̃
A
4BjB

.] In the momentum-frequency repre-

sentation, the combinations involving̃GK therefore turn intoL̃R/A
q̄ (ω̄)

[
G̃R −
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G̃A
]
q−q̄

(ε̄− ω̄) tanh[~(ε̄− ω̄)/2T ]. Thus,in the frequency representation the

Pauli factor is represented astanh[~(ε̄− ω̄)/2T ]. Here the variable~ε̄ repre-
sents the energy of the electron line on the upper (or lower) Keldysh contour
before it enters (or after it leaves) an interaction vertex at which its energy de-
creases (or increases) by~ω̄ [see Fig. 8.1]. The subtraction ofω̄ in the argument
of tanh thus reflects the physics of recoil: emitting or absorbing a photon causes
the electron energy to change by~ω̄, and it is this changed energy~(ε̄− ω̄) that
enters the Fermi functions for the relevant final or initial states.

Of course, in Keldysh perturbation theory,~ε̄will have different values from
one vertex to the next, reflecting the history of energy changes of an electron
line as it proceeds through a Feynman diagram. It is possible to neglect this
complication in the influence functional approach, if one so chooses, by always
using one and the same energy in Eq. (8.4e), which then should be chosento
be the same as that occuring in the thermal weighting factor[−n′(~ε)], i.e.
~ε̄ = ~ε. This approximation, which we shall henceforth adopt, is expected
to work well if the relevant physics is dominated by low frequencies, at which
energy transfers between the two contours are sufficiently small [~(ε̄−ε) � T ,
so that the electron “sees” essentially the same Fermi function throughout its
motion].

Though the origin and neccessity of the Pauli factor is eminently clear when
seen in conjunction with Keldysh perturbation theory, it is a rather nontrivial
matter to derive it cleanly in the functional integral approach [indeed, this
is the main reason for the length of our appendices!]. The fact that GZ got
it completely right in the position-time representation of Eq. (8.2) is, in our
opinion, a significant and important achievement; unfortunately, however, it
did not occur to them to use the frequency representation (8.4e).

4. Calculating τϕ à la GZ

To calculate the decoherence rateγϕ = 1/τϕ, one has to find the long-time
decay of the Cooperon contribution to the propagatorP̃ ε

eff(τ) of Eq. (8.1). To do
this, GZ proceeded as follows: using a saddle-point approximation for thepath
integral for the Cooperon, they replaced the sum over all pairs of self-returning
pathsRF/B(t3F/B

) by just the contribution〈e− 1

~
(iS̃R+S̃I)(τ)〉rw of the classical

“random walk” pathsRrw(t) picked out by the classical actions̃Sa
0 , namely

RF (t3F ) = Rrw(t3F ) andRB(t3B ) = Rrw(−t3B ), for which the paths on
the forward and backward Keldysh contours aretime-reversedpartners. The
subscript “rw” indicates that each such classical path is a self-returning random
walk through the given disorder potential landscape, and〈 〉rw means averaging
over all such paths. Next, in the spirit of [21], they replace the averageof the
exponent over all time-reversed pairs of self-returning random walks, by the
exponent of the average,e−F (τ), whereF (τ) = 〈iS̃R + S̃I〉rw (cf. Eq. (67)
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of [2]). This amounts to expanding the exponent to first order, then averaging,
and then reexponentiating. The functionF (τ) thus defined increases with time,
starting fromF (0) = 0, and the decoherence timeτϕ can be defined as the time
at which it becomes of order one, i.e.F (τϕ) ≈ 1.

To evaluate〈iS̃R + S̃I〉rw, GZ Fourier transform the functions̃L3a4′a =

L̃[t34,R
a(t3)−Ra′

(t4)] occuring inS̃R/I , and average the Fourier exponents
using [21] the distribution function for diffusive motion, which gives probability
that a random walk that passes pointRrw(t4) at timet4 will pass pointRrw(t3)
at timet3, i.e. that it covers a distanceR = Rrw(t3) − Rrw(t4) in time |t34|:

〈
eiq̄·[Rrw(t3)−Rrw(t4)]

〉

rw
'

∫
dd̄R

(
π

D|t34|

)d̄/2

e−R2/(4D|t34|) eiq̄·R

= e−q̄2D|t34| → C̃0
q̄(|t34|) = e−Eq̄ |t34| . (8.6)

(Heret34 = t3 − t4.) The arrow in the second line makes explicit that if we
also account for the fact that such time-reversed pairs of paths are dephased by
a magnetic field, by adding a factore−γH |t34|, the result is simply equal to the
bare Cooperon in the momentum-time representation.

Actually, the above way of averaging is somewhat inaccurate, as was pointed
out to us by Florian Marquardt: it neglects the fact that the diffusive trajectories
betweent3 and t4 are part of a larger,self-returningtrajectory, starting and
ending atr1 ' r2 at times∓1

2τ . It is actually not difficult to include this fact
[19], and this turns out to quantitatively improve the numerical prefactor for τϕ
(e.g. in Eq. (8.18) below). However, for the sake of simplicity, we shall here be
content with using Eq. (8.6), as GZ did.

Finally, GZ also assumed that the Pauli factor(δ̃ − 2ρ̃0) in S̃R remains
unchanged throughout the diffusive motion: they use a coordinate-momentum
path integral

∫
DR

∫
DP [instead of our coordinates-only version

∫
D̃′R], in

which (δ̃ − 2ρ̃0) is replaced by[1 − 2n0(h̃0)] = tanh(h̃0/2T ), and the free-
electron energỹh0(R(ta),P (ta) is argued to be unchanged throughout the
diffusive motion, since impurity scattering is elastic [cf. p. 9205 of [2]: “n
depends only on the energy and not on time because the energy is conserved
along the classical path”]. Indeed, this is truebetweenthe two interaction events
at timest3 andt4, so that the averaging of Eq. (8.6)is permissible. However,
as emphasized above, the full trajectory stretches from−1

2τ to t4 to t3 to 1
2τ ,

and the electron energydoeschange, by±~ω̄, at the interaction vertices at
t4 andt3. Thus,GZ’s assumption of a time-independent Pauli factor neglects
recoil effects. As argued in the previous section, these can straightforwardly
taken into account using Eq. (8.4e), which we shall use below. In contrast,
GZ’s assumption of time-independentn amounts dropping the−~ω̄ in our
tanh[~(ε− ω̄)/2T ] function.
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If one uses GZ’s assumptions to average Eq. (8.2), but uses the proper
tanh[~(ε− ω̄)/2T ] function, one readily arrives at

{
〈iS̃R〉rw

〈S̃I〉rw

}
= 2Re


−1

2 i

∫
(dω̄)(dq̄)





LF
q̄ (ω̄)

LK
q̄ (ω̄)





[
fself − fvert

]
(τ)


 , (8.7)

wherefself − fvert are the first and second terms of the double time integral

∫ τ
2

− τ
2

dt3

∫ t3

− τ
2

dt4 e
−iω̄t34

〈
eiq·[Rrw(t3)−Rrw(t4)] − eiq·[Rrw(−t3)−Rrw(t4)]

〉

rw
, (8.8)

corresponding to self-energy (a = a′ = F ) and vertex (a 6= a′ = F ) contri-
butions, and the2 Re[ ] in Eq. (8.7) comes from adding the contributions of
a′ = F andB. Performing the integrals in Eq. (8.8), we find

fself(τ) = C0
q̄(−ω̄)τ +

[
C0

q̄(−ω̄)
]2

[
e−τ(Eq̄+iω̄) − 1

]
, (8.9a)

fvert(τ) = C0
q̄(ω̄)

[
e−iω̄τ − 1

−iω̄ +
e−Eq̄τ − 1

Eq̄

]
. (8.9b)

Of all terms in Eqs. (8.9), the first term offself, which is linear inτ , clearly grows
most rapidly, and hence dominates the leading long-time behavior. Denoting
the associated contribution to Eq. (8.7) by1

~
〈iS̃R/S̃I〉leading,self

rw ≡ τγ
R/I,self
ϕ ,

the corresponding ratesγR/I,self
ϕ obtained from Eqs. (8.7) and (8.9) are:

γR,self
ϕ =

∫
(dω̄)(dq̄) tanh

[
~(ε− ω̄)

2T

]
2Re

[
1
2 i(E

0
q̄ − iω̄)

2νE0
q̄(Eq̄ + iω̄)

]
, (8.10a)

γI,self
ϕ =

∫
(dω̄)(dq̄) coth

[
~ω̄

2T

]
2Re

[
ω̄

2νE0
q̄(Eq̄ + iω̄)

]
. (8.10b)

Let us compare these results to those of GZ, henceforth usingγH = 0. Firstly,
both ourγI,self

ϕ andγR,self
ϕ are nonzero. In contrast, in their analysis GZ con-

cluded that〈S̃R〉rw = 0. The reason for the latter result is, evidently, their
neglect of recoil effects: indeed, if we drop the−~ω̄ from thetanh-factor of
Eq. (8.10a), we would findγR

ϕ = 0 and thereby recover GZ’s result, since the
real part of the factor in square brackets is odd inω̄.

Secondly and as expected, we note that Eq. (8.10b) forγI,self
ϕ agrees with that

of GZ, as given by their equation (71) of [2] for1/τϕ, i.e.γI,self
ϕ = γGZ

ϕ . [To
see the equivalence explicitly, use Eq. (8.A.9).] Noting that the

∫
dω̄-integral

in Eq. (8.10b) evidently diverges for largēω, GZ cut off this divergence at1/τel

(arguing that the diffusive approximation only holds for time-scales longerthan
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τel, the elastic scattering time). For example, for quasi-1-dimensional wires,
for which

∫
(dq̄) = a−2

∫
dq/(2π) can be used (a2 being the cross section, so

thatσ1 = a2σDrude
DC is the conductivity per unit length, withσDrude

DC = 2e2νD),
they obtain (cf. (76) of [2]):

1

τGZ
ϕ

' e2
√

2D

σ1

∫ 1

τel

1

τGZ
ϕ

(dω̄) coth

[
~ω̄

2T

]
' e2

πσ1

√
2D

τel




2T
√
τelτGZ

ϕ

~
+ 1


 ,

(8.11)

[The use of a self-consistently-determined lower cut-off is explained in Sec.6].
Thus, they obtained a temperature-independent contributionγ0,GZ

ϕ from the +1
term, which is the result that ingited the controversy.

However, we thirdly observe that, due to the special form of the retarded
interaction propagator in the unitary limit, the real parts of the last factors in
square brackets of Eqs. (8.10a) and (8.10b) are actuallyequal (for γH = 0).
Thus, the ultraviolet divergence ofγI,self

ϕ is cancelledby a similar divergence
of γR,self

ϕ . Consequently, the total decoherence rate coming from self-energy
terms,γself

ϕ = γI,self
ϕ + γR,self

ϕ , is free of ultraviolet divergencies. Thus we

conclude that the contributionγ0,GZ
ϕ found by GZ is an artefact of their neglect

of recoil, as is their claimed “decoherence at zero temperature”.

5. Dyson Equation and Cooperon self energy

The above results forγR,self
ϕ + γI,self

ϕ turn out to agree completely with those
of a standard calculation of the Cooperon self energyΣ̃ using diagrammatic
impurity averaging [details of which are summarized in Appendix F]. We shall
now summarize how this comes about.

CalculatingΣ̃ is an elementary excercise within diagrammatic perturbation
theory, first performed in [22]. However, to facilitate comparison with the
influence functional results derived above, we proceed differently:We have
derived [Sec. B.6.1] a general expression [23], before impurity averaging, for

the Cooperon self-energy of the form̃Σ =
∑

aa′

[
Σ̃I

aa′ + Σ̃R
aa′

]
, which keeps

track of which terms originate fromiS̃R or S̃I , and which contoursa, a′ = F/B
the vertices sit on. This expression agrees, as expected, with that of Keldysh
perturbation theory, before disorder averaging; it is given by Eq. (8.A.10) and
illustrated by Fig. 8.A.10 in App. A. We then disorder average using standard
diagrammatic techniques. For reference purposes, some details of this straight-
forward excercise are collected in Appendix F.2.

For present purposes, we shall consider only the “self-energy contribu-
tions” (a = a′) to the Cooperon self energy, and neglect the “vertex con-
tributions” (a 6= a′), since above we likewise extractedγR/I

ϕ from the self-
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energy contributions to the effective action,〈S̃R/I〉leading,self
rw . After impurity

averaging, the Cooperon then satisfies a Dyson equation of standard form,

Cself
q (ω) = C0

q(ω) + C0
q(ω) Σ

self
q (ω) Cself

q (ω), with standard solution:

Cself
q (ω) =

1

Eq − iω − Σ
self
q (ω)

, (8.12)

whereΣ
R/I,self

=
∑

a Σ
R/I,self
aa , with Σ

R/I,self
q,FF (ω) =

[
Σ

R/I,self
q,BB (−ω)

]∗
, and

Σ
I,self
q,FF (ω) ≡ −1

~

∫
(dω̄)(dq̄) coth

[
~ω̄

2T

]
Im

[
LR

q̄ (ω̄)
]
C0

q−q̄(ω − ω̄) ,

Σ
R,self
q,FF (ω) ≡ 1

~

∫
(dω̄)(dq̄)

{
tanh

[
~(ε+ 1

2ω − ω̄)

2T

]
1
2 iL

R
q̄ (ω̄) (8.13)

×
[
C0

q−q̄(ω − ω̄) +
[
D0

q̄(ω̄)
]2

([
C0

q(ω)
]−1

+
[
D0

q̄(ω̄)
]−1

)]}
.

In Eq. (8.13), the terms proportional to
(
D0)2[(C0)−1

+
(
D0)−1]

stem from
the so-called Hikami contributions, for which an electron line changes from
G̃R/A to G̃A/R to G̃R/A. As correctly emphasized by AAG [16] and AAV [17],
such terms are missed by GZ’s approach of averaging only over time-reversed
pairs of paths, since they stem from paths that are not time-reversed pairs.

Now, the standard way to define a decoherence rate for a Cooperon ofthe form
(8.12) is as the “mass” term that survives in the denominator whenω = Eq = 0,

i.e. γself
ϕ = −Σ

self
0

(0) = −2Re
[
Σ

I+R,self
FF

]
. In this limit the contribution of

the Hikami terms vanishes identically, as is easily seen by using the last of
Eqs. (8.4a), and noting that Re[i(D0

)−1(D0
)2(D0

)−1] = Re[i] = 0. (The
realization of this fact came to us as a surprise, since AAG and AAV had argued
that GZ’s main mistake was their neglect of Hikami terms [16, 17], thereby
implying that the contribution of these terms is not zero, but essential.) The
remaining (non-Hikami) terms of Eq. (8.13) agree with the result forΣ̃ of AAV
[17] and reproduce Eqs. (8.10) given above, in other words:

γself
ϕ = [−Σ

self
0

(0)] =
1

τ ~
〈iS̃R + S̃I〉leading,self

rw . (8.14)

Thus, the Cooperon mass term−Σ
self
0

(0) agrees identically with the coefficient
of τ in the leading terms of the averaged effective action of the influence func-
tional. This is no coincidence: it simply reflects the fact that averaging in the
exponent amounts to reexponentiating theaverage of the first order termof an
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expansion of the exponential, while in calculating the self energy one of course
also averages the first order term of the Dyson equation. It is noteworthy,
though, that for the problem at hand, where the unitary limit of the interac-
tion propagator is considered, it suffices to perform this average exclusively
over pairs of time-reversed paths — more complicated paths are evidently not
needed, in contrast to the expectations voiced by AAG and AAV [16, 17].The
latter expectations do apply, however, if one consideres forms of the interaction

propagatorLR
q̄ (ω̄) more general than the unitary limit of (8.4a) (i.e. not pro-

portional to
[
D0

q̄(ω̄)]−1). Then, the Hikami contribution toγself
ϕ = −Σ

self
0

(0)
indeed does not vanish; instead, by noting that forω = q = γH the second line
of Eq. (8.13) can always be written as2Re

[
D0

q̄(ω̄)
]
, we obtain

γself
ϕ =

1

~

∫
(dω̄)(dq̄)

{
coth

[
~ω̄

2T

]
+ tanh

[
~(ε− ω̄)

2T

]}

×Im
[
LR

q̄ (ω̄)
] 2E0

q̄

(E0
q̄)2 + ω̄2

, (8.15)

which is the form given by AAV [17].

6. Vertex contributions

Eq. (8.10b) forγI,self
ϕ has the deficiency that its frequency integral isinfrared

divergent (forω̄ → 0) for the quasi-1 and 2-dimensional cases, as becomes
explicit once itsq-integral has been performed [as in Eq. (8.11)]. This problem
is often dealt with by arguing that small-frequency environmental fluctuations
that are slower than the typical time scale of the diffusive trajectories are, from
the point of view of the diffusing electron, indistuingishable from a static field
and hence cannot contribute to decoherence. Thus, a low-frequency cutoff γϕ

is inserted by hand into Eqs. (8.10) [i.e.
∫
0 dω̄ →

∫
γϕ
dω̄], andγϕ determined

selfconsistently. This procedure was motivated in quite some detail by AAG in
Ref. [16], and also adopted by GZ in Ref. [2] [see Eq. (8.11) above]. However,
as emphasized by GZ in a subsequent paper [3], it has the serious drawback that
it does not necessarily reproduce the correct functional form for the Cooperon
in the time domain; e.g., in̄d = 1 dimensions, the Cooperon is known [9] to
decay ase−a(τ/τϕ)3/2

, i.e. with a nontrivial power in the exponent, whereas a
“Cooperon mass” would simply givee−τ/τϕ .

A cheap fix for this problem would be to take the above idea of a self-
consistent infrared cutoff one step further, arguing that the Cooperon will decay
ase−τγself

ϕ (τ), whereγself
ϕ (τ) is atime-dependentdecoherence rate, whose time-

dependence enters via a time-dependent infrared cutoff. Concretely,using
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Eqs. (8.14) and (8.10), one would write

γself
ϕ (τ) = 2

∫ ∞

1/τ
(dω̄) ω̄

{
coth

[
~ω̄

2T

]
+ 1

2

∑

s=±

s tanh

[
~(ε− sω̄)

2T

]}

×
∫

(dq̄)

~ν

1

(Dq̄2)2 + ω̄2
. (8.16)

It is straightforward to check [using steps analogous to those used belowto
obtain Eq. (8.18)] that in̄d = 1 dimensions, the leading long-time depen-
dence isγself

ϕ (τ) ∝ τ1/2, so that this cheap fix does indeed produce the desired

e−a(τ/τϕ)3/2

behavior.
The merits of this admittedly rather ad hoc cheap fix can be checked by doing

a better calculation: It is well-known that the proper way to cure the infrared
problems is to include “vertex contributions”, having interactions vertices on
opposite contours. In fact, the original calculation of AAK [9] in effect did
just that. Likewise, although GZ neglected vertex contributions in [2], they
subsequently included them in [3], exploiting the fact that in the influence
functional approach this is as straightforward as calculating the self-energy
terms: one simply has to include the contributions to〈iS̃R/S̃I〉rw of the vertex
function−fvert in Eq. (8.7), too. The leading contribution comes from the first
term in Eq. (8.9b), to be called〈iS̃R/S̃I〉leading,vert

rw , which gives a contribution
identical to〈iS̃R/S̃I〉leading,self

rw , but multiplied by an extra factor of− sin(ω̄τ)
ω̄τ

under the integral. Thus, if we collect all contributions to Eq. (8.7) that have been
termed “leading”, our final result for the averaged effective action is1

~
〈iS̃R +

S̃I〉leading
rw ≡ Fd̄(τ), with

Fd̄(τ) = τ

∫
(dω̄) ω̄

{
coth

[
~ω̄

2T

]
+ tanh

[
~(ε− ω̄)

2T

]} (
1 − sin(ω̄τ)

ω̄τ

)

×
∫

(dq̄)

~ν

1

(Dq̄2)2 + ω̄2
. (8.17)

This is our main result: an expression for the decoherence functionFd̄(τ)
that is both ultraviolet and infrared convergent, due to the(coth + tanh) and
(1 − sin)-combinations, respectively, as will be checked below. Comparing
this to Eqs. (8.16), we note thatFd̄(τ) has precisely the same form asτγself

ϕ (τ),
except that the infrared cutoff now occurs in the

∫
(dω̄) integrals through the

(1 − sin) combination. Thus, the result of including vertex contributions fully
confirms the validity of using the cheap fix replacement

∫
0(dω̄) →

∫
1/τ (dω̄),

the only difference being that the cutoff function is smooth instead of sharp
(which will somewhat change the numerical prefactor ofτϕ).

It turns out to be possible to also obtain Eq. (8.17) [and in additionall the
“subleading” terms of Eq. (8.7)] by purely diagrammatic means: to this end,
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one has to set up and solve a Bethe-Salpeter equation. This is a Dyson-type
equation, but with interaction lines transferring energies between the upper
and lower contours, so that a more general CooperonCε

q(Ω1,Ω2), with three
frequency variables, is needed. Such an analysis will be published elsewhere
[19].

To wrap up our rederivation of standard results, let us perform the integrals
in Eq. (8.17) forFd̄(τ) for the quasi-1-dimensional casēd = 1. The

∫
(dq̄)-

integral yields̄ω−3/2
√
D/2/(σ1~). To do the frequency integral, we note that

since the(coth + tanh)-combination constrains the relevant frequencies to be
|~ω̄|<

∼T , the integral is dominated by the small-frequency limit of the inte-
grand, in whichcoth(~ω̄/2T ) ' 2T/~ω̄, whereastanh, making a subleading
contribution, can be neglected. The frequency integral then readily yields

F1(τ) =
4

3
√
π

Tτ/~

g1(
√
Dτ)

≡ 4

3
√
π

(
τ

τϕ

)3/2

, (8.18)

so that we correctly obtain the knowne−a(τ/τϕ)3/2

decay for the Cooperon. Here
gd̄(L) = (~/e2)σd̄L

d̄−2 represents the dimensionless conductance, which is
� 1 for good conductors. The second equality in Eq. (8.18) definesτϕ, where
we have exploited the fact that the dependence ofF1 on τ is a simpleτ3/2

power law, which we made dimensionless by introducing the decoherence time
τϕ. [Following AAG [16], we purposefully arranged numerical prefactors such
that none occur in the final Eq. (8.19) forτϕ below.] Settingτ = τϕ in Eq. (8.18)
we obtain the self-consistency relation and solution (cf. Eq. (2.38a) of AAG,
[16]):

1

τϕ
=

T/~

gd̄(
√
Dτϕ)

, ⇒ τϕ =

(
~

2σ1

Te2
√
D

)2/3

. (8.19)

The second relation is the celebrated result of AAK, which diverges forT →
0. This completes our recalculation ofγAAK

ϕ using GZ’s influence functional
approach.

Eq. (8.18) can be used to calculate the magnetoconductance ford̄ = 1 via

σWL
DC (H) = −σ

Drude
DC

πν~

∫ ∞

0
dτ C̃0

r=0(τ) e
−F1(τ) . (8.20)

(Here, of course, we have to useγH 6= 0 in C̃0
r=0(τ). Comparing the result

to AAK’s result for the magnetoconductance (featuring an Ai’ function for
d̄ = 1), one finds qualitatively correct behavior, but deviations of up to 20% for
small magnetic fieldsH. The reason is that our calculation was not sufficiently
accurate to obtain the correct numerical prefactor in Eq. (8.18). [GZ didnot
attempt to calculate it accurately, either]. It turns out [19] that if the averaging
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over random walks of Eq. (8.6) is done more accurately, following Marquardt’s
suggestion of ensuring that the random walks areself-returning, the prefactor
changes in such a way that the magnetoconductance agrees with that of AAK
to within an error of at most 4%. Another improvement that occurs for this
more accurate calculation is that the results are well-behaved also for finiteγH ,
which is not the case for our present Eq. (8.10a): forγH 6= 0, the real part of
the square brackets contains a term proportional toγH/E

0
q̄, which contains an

infrared divergence as̄q → 0. This problem disappears if the averaging over
paths is performed more accurately [19].

7. Discussion and summary

We have shown [in Apps. B to D, as summarized in App. A] that GZ’s
influence functional approach to interacting fermions is sound in principle,
and that standard results from Keldysh diagrammatic perturbation theory can
be extracted from it, such as the Feynman rules, the first order terms of a
perturbation expansion in the interaction, and the Cooperon self energy.

Having established the equivalence between the two aproaches in general
terms, we were able to identify precisely why GZ’s treatment of the Pauli factor
(δ̃ − 2ρ̃0) occuringS̃R was problematic: representing it in the time domain as
tanh[h̃0(t)/2T ], they assumed it not to change during diffusive motion along
time-reversed paths. However, they thereby neglected the physics of recoil, i.e.
energy changes of the diffusing electrons by emission or absorption of photons.
As a result, GZ’s calculation yielded the result〈iS̃GZ

R 〉rw = 0. The ultraviolet
divergence in〈S̃GZ

I 〉rw, which in diagrammatic approaches is cancelled by terms
involving atanh function, was thus left uncancelled, and instead was cut off at
ω̄ ' 1/τel, leading to the conclusion thatγGZ

ϕ (T → 0) is finite.
In this paper, we have shown that the physics of recoil can be included

very simply by passing from the time to the frequency representation, in which
(δ̃ − 2ρ̃0) is represented bytanh[~(ε− ω̄)/2T ]. Then〈iS̃R〉rw is foundnot to
equal to zero; instead, it cancels the ultraviolet divergence of〈S̃I〉rw, so that the
total rateγϕ = γI

ϕ+γR
ϕ reproduces the classical resultγAAK

ϕ , which goes to zero
for T → 0. Interestingly, to obtain this result it was sufficient to average only
over pairs of time-reversed paths; more complicated paths, such as represented
by Hikami terms, are evidently not needed. (However, this simplification is
somewhat fortuitous, since it occurs only when considering the unitary limit of
the interaction propagator; for more general forms of the latter, the contribution
of Hikami termsis essential, as emphasized by [16, 17].)

The fact that the standard result forγϕ canbe reproduced from the influence
functional approach is satisfying, since this approach is appealingly clear and
simple, not only conceptually, but also for calculatingγϕ. Indeed, once the form
of the influence functional (8.2) has been properly derived (whereinlies the hard
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work), the calculation of〈iS̃R + S̃I〉rw requires little more than knowledge of
the distribution function for a random walk and can be presented in just a few
lines [Sec.4]; indeed, the algebra needed for the key steps [evaluating Eq. (8.7)
to get the first terms of (8.10), then finding (8.10) and (8.17)] involves just a
couple of pages.

We expect that the approach should be similarly useful for the calculation of
other physical quantities governed by the long-time, low-frequency behavior of
the Cooperon, provided that one can establish unambiguously that it suffices to
include the contributions of time-reversed paths only — because Hikami-like
terms, though derivable from the influence functional approach too, can not
easily be evaluated in it; for the latter task, diagrammatic impurity averaging
still seems to be the only reliable tool.
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Appendix

Without dwelling on details of derivations, we outline in this appendix how
the influence functional presented in Sec. 2 is derived. (A similar summary
is contained in [14, 23]; however, it is incomplete, in that we have introduced
important improvements since.) Before we start, let us point out the two main
differences between our formulation and that of GZ:
(i) GZ formulated the Cooperon propagator in terms of a coordinate-momentum
path integral

∫
DR

∫
DP , in which(δ̃−2ρ̃0) is represented as[1−2n0(h̃0)] =

tanh(h̃0/2T ), where the free-electron energyh̃0(R(ta),P (ta)) depends on
position and momentum. This formulation makes it difficult to treat the Pauli
factor with sufficient accuracy to include recoil. In contrast, we achievethe
latter by using a coordinates-only version

∫
D̃′R, in which exact relations be-
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tween noninteracting Green’s functions make an accurate treatment of the Pauli
factor possible, upon Fourier-transforming the effective action to the frequency
domain.
(ii) GZ effectively performed thermal weighting at an initial timet0 that is not
sent to−∞, but (in the notation of the main text) is set tot0 = −τ/2; with the
latter choice, it is impossible to correctly reproduce the first (or higher) order
terms of a perturbation expansion. GZ’s claim [3] that they have reproduced
these is incorrect (see end of App. C.3), since their time integrals have−τ/2 as
the lower limit, whereas in the Keldysh approach they run from−∞ to+∞. We
have found that with some (but not much) extra effort itis possible to properly
take the limitt0 → −∞, to correctly recover the first order perturbation terms
[App. C.3] and to express the conductivity in a form containing thermal weight-
ing in the energy domain explicitly in the form of a factor

∫
(dε)[−n′0(~ε)]P̃ ε,

whereP̃ ε is an energy-dependent path integral, obtained by suitable Fourier
transformation [App. B.6.3 and C.4].

1. Outline of derivation of influence functional

We consider a disordered system of interacting fermions, with Hamiltonian
Ĥ = Ĥ0 + Ĥi:

Ĥ0 =

∫
dx ψ̂†(x)h0(x)ψ̂(x) , (8.A.1)

Ĥi =
e2

2

∫
dx1 dx2 : ψ̂†(x1)ψ̂(x1) : Ṽ int

12 : ψ̂†(x2)ψ̂(x2) :

Here
∫
dx =

∑
σ

∫
dr, andψ̂(x) ≡ ψ̂(r, σ) is the electron field operator for

creating a spin-σ electron at positionr, with the following expansion in terms
of the exact eigenfunctionsψλ(x) of h0(x) = −~

2

2m ∇
2
r + Vimp(r) − µ:

ψ̂(x) =
∑

λ

ψλ(x)ĉλ, [h0(x) − ξλ]ψλ(x) = 0. (8.A.2)

The interaction potential̃V int
12 = Ṽ int(|r1 − r2|) acts between the normal-

ordered densities atr1 andr2. The Kubo formula for the DC conductivity of a
d-dimensional conductor gives

σDC = −Re

[
lim

ω0→0

1

dω0

∑

σ1

∫
dx2 j11′ · j22′ J̃11′,22(ω0)

∣∣∣
x1=x

1′

]
,

J̃11′,22′(ω0) =

∫ ∞

−∞
dt12e

iω0t12θ(t12) C̃[11′,22′] , (8.A.3)
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C̃[11′,22′] ≡
1

~
〈[ψ̂†(t1, x1′)ψ̂(t1, x1), ψ̂

†(t2, x2′)ψ̂(t2, x2)]〉H ,

wherej11′ ≡ −ie~

2m (∇1 − ∇1′) and a uniform applied electric fieldE(ω0)
was represented using uniform, time-dependent vector potential,E(ω0) =
iω0A(ω0). A path integral representation for̃C[11′,22′] can be derived using
the following strategy, adapted from GZ’s Ref. [2]: (1) introduce a source
term into the Hamiltonian, in which an artificial source fieldṽ2′2 couples to
ψ̂†(t2, x2′)ψ̂(t2, x2), and writeC̃[11′,22′] as the linear response to the source

field ṽ22′ of the single-particle density matrix̃ρ11′ = 〈ψ̂†(t1, x1′)ψ̂(t1, x1)〉H .
(2) Decouple the interaction using a Hubbard-Stratonovitch transformation,
thereby introducing a functional integral over real scalar fieldsVF/B , the so-
called “interaction fields”, defined on the forward and backward Keldysh con-
tours, respectively; these then constitute a dynamic, dissipative environment
with which the electrons interact. (3) Derive an equation of motion forρ̃V

11′ ,
the single-particle density matrix for a given, fixed configuration of the fields
VF/B , and linearize it iñv2′2, to obtain an equation of motion for the linear
responseδρ̃V

11′(t) to the source field. (4) Formally integrate this equation of
motion by introducing a path integral

∫
D̃′(R) over the coordinates of the sin-

gle degree of freedom associated with the single-particle density matrixδρ̃V
11′ .

(5) Use the RPA-approximation to bring the effective actionSV that governs
the dynamics of the fieldsVF/B into a quadratic form. (6) Neglect the effect of
the interaction on the single-particle density matrix whereever it occurs in the
exponents occuring under the path integral

∫
D̃′R, i.e. replacẽρV

ij there by the
free single-particle density matrix

ρ̃0
ij = 〈ψ̂†(xj)ψ̂(xi)〉0 =

∑

λ

ψ∗
λ(xj)ψλ(xi)n0(ξλ) , (8.A.4)

where thermal averaging is performed using〈Ô〉0 = Tre[−βĤ0Ô]/Tr[e−βĤ0 ].
(7) Perform the functional integral (which steps (5) and (6) have rendered Gaus-
sian) over the fieldsVF/B ; the environment is thereby integrated out, and its ef-
fects on the dynamics of the single particle are encoded in an influence functional
of the forme−(iS̄R+S̄I). The final result of this strategy is thatj22′ ·j11′ C̃[11′,22′]

can be written as [cf. (II.49)]

∫
dx2 j22′ · j11′ C̃[11′,22′] =

∫
dx0F ,0̄B

ρ̃0
0F 0̄B

F

∫ 1F

0F

B

∫ 1′B

0̄B

D̃′(R) (8.A.5)

× 1

~

{[
ĵ(t2F ) − ĵ(t2B )

]
ĵ(t1)e

−[iS̃R+S̃I ](t1,t0)/~
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whereF
∫
B

∫
D̃′(R) is used as a shorthand for the following forward and back-

ward path integral between the specified initial and final coordinates and times:

F

∫ iF

jF

B

∫ ı̄B

̄B

D̃′(R) . . . ≡
∫ RF (tFi )=rF

i

RF (tFj )=rF
j

D̃′RF (t3F ) eiS̃
F
0

(tFi ,tFj )/~

×
∫ RB(tBi )=rB

ı̄

RB(tBj )=rB
̄

D̃′RB(t3B ) e−iS̃B
0

(tBi ,tBj )/~ . . .

(8.A.6)

The complex weighting functionalei(S̃
F
0
−S̃B

0
) occuring therein involves the ac-

tion for a single, free electron. Expression (8.A.5) has a simple interpretation:
thermal averaging with̃ρ0

00̄
at timet0 (for which we take the limit→ −∞) is fol-

lowed by propagation in the presence of interactions (described bye−[iS̃R+S̃I ])
from timet0 up to timet1, with insertions of current verticeŝj(t2a) at timet2
on either the upper or lower Keldysh contour.

For the purpose of calculating the Cooperon propagator, we now make the
following approximation in Eq. (8.A.5) [referred to as “approximation (ii)” in
App. B]: For the first or second terms, for which the current vertex occurs
at time t2ã on contourã = F or B respectively, we neglect all interaction
vertices that occur on thesamecontourã at earlier timest3ã or t4ã ∈ [t0, t2ã ];
however, for the opposite contour containing no current vertex, we include
interaction vertices forall times∈ [t0, t1], with t0 → ∞. [This turns out to
be essential to obtain, after Fourier transforming, the proper thermal weighting
factor [−n′0(~ε)] occuring in Eq. (8.0), see App. C.3.] The rationale for this
approximation is that, in diagrammatic language, this approximation retains
only those diagrams for whichboth current verticesj22′ andj11′ are always
sandwiched between ãGR- and aG̃A-function; these are the ones relevant for
the Cooperon. The contributions thereby neglected correspond to the so-called
“interaction corrections”. [If one so chooses, they lattercanbe kept track of,
though.]

This approximation (ii) is much weaker than the one used by GZ at a similar
point in their calculation: to simplify the thermal weighting factor describing
the initial distribution of electrons, namely to obtain the explicit factorρ0 in
Eq. (49) of [2], they sett0 → t2 (their t′ corresponds to ourt2), and thereby
perform thermal weighting at timet2, instead of at−∞. As a consequence,
in their analysis all time integrals havet2 as lower limit, which means that
(contrary to their claims in [3]) they did not correctly reproduce the Keldysh
first order perturbation expansion for̃C[11′,22′], in which all time integrals run
to−∞. A detailed discussion of this matter is given in App. B.3. [Contrary to
our initial expectations, but in agreement with those of GZ, it turns out, though,
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that the choice oft0 does not to have any implications for the calculation ofτϕ,
which does not to depend on whether one choosest0 = t2 or sends it to−∞.]

Having made the above approximation (ii), the effective action(iS̃R + S̃I)
occuring in Eq. (8.A.5) is found to have the following form (we use the notation
iS̃R/S̃I to write two equations with similar structure in one line, and upper or
lower terms in curly brackets refer to the first or second case):

[iS̃R/S̃I ](t1, t0) ≡
∑

aa′

∫ t1

t0

dt3

∫ t1

t0

dt4 (iL̃R/L̃I)3a4a′
, (8.A.7)

(iL̃R/L̃I)3F 4F = −1
2 i θ34 δ̃3F 3̄F

{
[δ̃ − 2ρ̃0]4F 4̄F

δ̃4F 4̄F

}
L̃R/K

3̄F 4̄F
, (8.A.8a)

(iL̃R/L̃I)3B4F = 1
2 i θ34

{
[δ̃ − 2ρ̃0]4F 4̄F

δ̃4F 4̄F

}
L̃R/K

3̄B 4̄F
δ̃3̄B3B

, (8.A.8b)

(iL̃R/L̃I)3F 4B = ∓1
2 i θ34 δ̃3F 3̄F

L̃A/K

4̄B 3̄F

{
[δ̃ − 2ρ̃0]4̄B4B

δ̃4̄B4B

}
, (8.A.8c)

(iL̃R/L̃I)3B4B = ±1
2 i θ34 L̃

A/K

4̄B 3̄B
δ̃3̄B3B

{
[δ̃ − 2ρ̃0]4̄B4B

δ̃4̄B4B

}
. (8.A.8d)

Hereδ̃ı̄i = δσı̄σiδ(rı̄ −ri) and(L̃R,A,K)ı̄a ̄a′
= (L̃R,A,K)

(
tia − tja′

, ra
ı̄ (tia)−

ra′

̄ (tja′
)
)

are the standard retarded, advanced and Keldysh interaction propa-
gators. For each occurrence in Eqs. (8.A.8) of a pair of indices, one without
bar, one with, e.g.4a and4̄a, the corresponding coordinatesra

4 andra
4̄

are both
associated with thesametime t4, and integrated over,

∫
dra

4dr
a
4̄
, in the path

integral
∫
D′(R). (This somewhat unusual aspect of the “coordinates-only”

path integral used in our approach is discussed in explicit detail in App. D;it is
needed to account for the fact that the density-matrixρ̃0 is non-local in space,
and arises upon explicitly performing the

∫
DP momentum path integral in

GZ’s formulation.) Thẽδı̄i functions on the right hand side of Eqs. (8.A.8) will
kill one of these double coordinate integrations at timeti.

Eqs. (8.A.7) and (8.A.8) are the main result of our rederivation of the influ-
ence functional approach. They are identical in structure (including signs and
prefactors) to the corresponding expressions derived by GZ (Eqs.(68) and (69)
of [2]), as can be verified by using the relations

−e2R̃ij = L̃R
ij = L̃A

ji, e2Ĩij = e2Ĩji = −1
2 iL̃

K
ij , (8.A.9)
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to relate our interaction propagatorsL̃ij to the functionsRij andIij used by GZ.
However, whereas Eqs. (68) and (69) of [2] are written in a mixed coordinate-
momentum representation in which it is difficult to treat the Pauli factors
(δ̃ − 2ρ̃0) sufficiently accurately, our expressions (8.A.8) are formulated in
a coordinates-only version. Formally, the two representations are fully equiv-
alent. The key advantage of the latter, though, is that passing to a coordinate-
frequency representation (which can be donebeforedisorder averaging, allows
us to sort out the fate of(δ̃ − 2ρ̃0), as discussed in Sec. 3 [and extensively in
App. B.6.3].

2. Cooperon self energy before disorder averaging

From the formalism outlined above, it is possible to recover the standard
results of diagrammatic Keldysh perturbation theory,before disorder averaging,
by expanding the path integral (8.A.5) in powers of the effective action(iS̃R +
S̃I ). For example, using Eqs. (8.A.8) [and being sufficiently careful with signs,
see App. B.6.1) one readily obtains the following expressions for Cooperon self
energyΣ̃R/I =

∑
aa′ Σ̃

R/I
aa′ summarized diagrammatically in Fig. 8.A.1:

(
Σ̃

R/I
FF

)3F 4̄F

4̄B3B

= − i~
2

(G̃K/R)3F 4̄F G̃A
4̄B3B

(L̃R/L̃K)3F 4̄F , (8.A.10a)

(
Σ̃

R/I
BF

)3F 4̄F

4̄B3B

= − i~
2

(G̃K/R)3F 4̄F G̃A
4̄B3B

(L̃R/1
2 L̃

K) 4̄F
3B

, (8.A.10b)

(
Σ̃

R/I
FB

)3F 4̄F

4̄B3B

= − i~
2
G̃R,3F 4̄F (G̃K/A)4̄B3B

(L̃A/1
2 L̃

K) 3F

4̄B
, (8.A.10c)

(
Σ̃

R/I
BB

)3F 4̄F

4̄B3B

= − i~
2
G̃R,3F 4̄F (G̃K/A)4̄B3B

(L̃A/L̃K)4̄B3B
. (8.A.10d)

To obtain this, we exploited the fact that every vertex occuring in the effective
action is sandwidched between retarded propagators if it sits on the uppercon-
tour, and advanced ones on the lower contour. The Keldysh functions arise from
using some exact identities, valid (before impurity averaging) in the coordinate-
time representation: depending on whether a vertex at timet4′a sits on the for-
ward (time-ordered) or backward (anti-time-ordered) contour (a′ = F/B), the
factor(δ̃ − 2ρ̃0)L̃R/A occuring inL̃R

aa′ is sandwidched as follows (on the left
hand sides below, a coordinate integration

∫
dx4a′

over the un-barred variable
at vertex 4 is implied):

[
G̃

R
iF 4F

(δ̃ − 2ρ̃
0)4F 4̄F

]
L̃

R
34̄F

G̃
R
4̄F jF

→ G̃
K
iF 4̄F

(ε̄ − ω̄) L̃R
34̄F

(ω̄) G̃
R
4̄F jF

(ε̄), (8.A.11a)

G̃
A
̄B 4̄B

L̃
A
4̄B3

[
(δ̃ − 2ρ̃

0)4̄B4B
G̃

A
4B ı̄B

]
→ −G̃

A
̄B 4̄B

(ε̄) L̃A
4̄B3(ω̄) G̃

K
4̄B ı̄B

(ε̄ − ω̄) (8.A.11b)
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(b)

(c)

(a)

Σ∼ R
BF Σ∼ R

FB Σ∼ R
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Σ∼ R

(Σ )R∼ F4

F3
F4

Σ∼ R
FF

F3

Σ∼ I
BF Σ∼ I

FB Σ∼ I
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Σ∼ I

(Σ )I∼ F3
F4

B4 B3

F3
F4

1’B
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3B

3F

B4 2B

1F

Σ∼ I
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B4 B3
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A K
A
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K
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A A

RR

R R R R
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K
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KK

K

A
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Figure 8.A.1. First order contributions to the irreducible self energy of the Cooperon,illustrating
Eqs. (8.A.10). The arrows associated with each factorG̃ij or L̃ij in Eqs. (8.A.10) are drawn to
point from the second index to the first (j to i). Filled double dots denote the occurence of a factor
(δ̃ − 2ρ̃)4F 4̄F

on the upper contour or(δ̃ − 2ρ̃)4̄B4B
on the lower contour. Bars on filled dots

are used to indicate the barred indices to which the interaction lines is connected. Both filled and
open single dots indicate a delta functionδ̃; the open dots stand for delta functions that have been
inserted to exhaust dummy integrations, as discussed after Eqs. (8.A.8). The diagrams in (b) and
(c) coincide precisely with the those obtained by standard Keldysh diagrammatic perturbation
theory for the Cooperon self energy, as depicted, e.g., in Fig. 2 of Ref. [17]. (There, impurity
lines needed for impurity averaging are also depicted; the present figure, impurity averaging has
not yet been performed.)
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The left- and right-hand sides are written in the time and frequency domains,
respectively. To obtain Keldysh functions from the left-hand side expressions,
we exploit the fact that the upper or lower contours are time- or anti-time-
ordered to add an extra−G̃A/R = 0, and then exploited Eqs. (8.5a) to obtain a
factor±G̃K .

3. Thermal averaging

It remains to figure out how the thermal weighting in the first line of Fig. 8.0
can be derived from our general path integral expression Eq. (8.A.5). This is
a standard, if nontrivial, excercise in Fourier transformation, carried out (along
the lines of a similar analysis by AAK [9]) in App. B.6.4 and C.4. The result
is an equation for the conductivity similar to Eq. (8.A.5), but with a more
complicated path integral, given by

P̃ 12,ε
43 (τ12) =

∫ ∞

−∞
dτ̃12

∫
(dω̃) eiω̃τ̃12

∫ ∞

−∞
dτ̄12e

iτ̄12(ε− 1

2
ω̃)P̃ 12

43 . (8.A.12)

Here the notationP 12
34 is used as a shorthand for the general double path integral

P̃ 12
43 ≡ θ12 F

∫ RF (tF
1

)=rF
1

RF (tF
2

)=rF
2

B

∫ RB(tB
3

)=rB
3

RB(tB
4

)=rB
4

D̃′(R) e−[iS̃R+S̃I ]/~ , (8.A.13)

ranging from timetF2 to tF1 on the forward contour (to be called “forward piece”)
and fromtB4 to tB3 on the backward contour (to be called “backward piece”),
and the time integration variables in Eq. (8.A.12) are defined as follows:

τ12 = 1
2

[
(tF1 − tF2 ) + (tB3 − tB4 )

]
, τ̃12 = 1

4

[
(tF1 + tF2 ) − (tB3 + tB4 )

]
,

τ̄12 = (tF1 − tF2 ) − (tB3 − tB4 ) . (8.A.14)

[The notation forP̃ 12′,ε
21′ (τ12) takes it to be understood that the indices(12′, 21′)

refer only to position coordinates, whereas the time argumentstF1 , tF2 , tB3 ,
tB4 are as indicated in Eq. (8.A.13), and are converted toτ12, τ̃12 and τ̄12 via
Eq. (8.A.14).]

We need to consider
〈
P̃ 12′

21′
〉

dis only in the limitr2 → r1, since the Cooperon

contribution to it decays ase−|r2−r1|/lel, wherelel is the elastic scattering length.
The purpose of the time integrals in Eq. (8.A.12) is to project out from the general
path integralP 12

34 , defined in the position-time domain, an object depending in
an appropriate way on the energyε occuring in the thermal weighting factor:
The

∫
dτ̃12 integral fixes the average energy of the upper and lower electron lines

(in diagrammatic language) to beε − ω̃/2 [whereτ̃12 is the length difference
between the forward and backward pieces of the contour]. The

∫
(dω̃) integral

averages over all possible frequency differencesω̃ between the upper and lower
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electron lines, as is necessary when vertex terms are present that transfer energy
between them. And finally, the

∫
dτ̃12 integral projects out thẽτ12-dependence

of P 12
43 [whereτ̃12 is the difference between the midpoints of the forward and

backward pieces of the contour]. The only remaining time variable,τ12, is the
average of the lengths of the forward and backward pieces, and can be viewed as
the “observation time” as a function of which̃P 12′,ε

21′ (τ12)will decay. P̃ 12′,ε
21′ (τ12)

will contain a contribution resulting from time-reversed paths that corresponds
to the full Cooperon in the position-time representation,C̃ρ=0(τ12). The time
scale on which it decays is the desired decoherence timeτϕ.

Now, to properly and dutifully perform the integrals in Eq. (8.A.12) would
be an unfeasibly complicated task in the path integral approach. (Diagrammati-
cally, too, this is difficult, as will be discussed in [19].) To avoid these complica-
tions, we shall use a rather rough but effective shortcut [used by GZtoo, but not
explicitly discussed as such, since they chose not to discuss thermal averaging as
explicitly as in Eqs. (8.0)]: to extract from̃P 12′

21′ an object depending only on the
timeτ12, we simply set̃τ12 = 0, τ̄12 = 0 andω̃ = 0, instead of integrating them
out, assuming that this will not too strongly affect the resultingτ12-dependence
of P̃ 12,ε

43 (τ12). (The merits of this approximation will be discussed in more de-
tail elsewhere [19].) Thus, we settF1 = tF3 = τ/2 andtF2 = tB4 = −τ/2, which
implies that the observation time isτ12 = τ . The result is that wẽP 12,ε

43 (τ12)

by the objectP̃ 12′,ε
21′,eff(τ) defined in Eq. (8.1). When doing so, we should choose

the energy variable~ε occuring in thetanh[~(ε − ω̄)/2T ]-factor of S̃R to be
the same as that occuring in the thermal weighting factor[−n′0(~ε)]. In dia-
grammatic terms this approximation is rather natural: it corresponds to fixing
the average energy of the upper and lower electron lines to beε.
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