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Abstract We have rederived the controversial influence functional approa&olubev
and Zaikin (GZ) for interacting electrons in disordered metals in a way loats
us to show its equivalence, before disorder averaging, to diagramiedtigsh
perturbation theory. By representing a certain Pauli fa(}for 25°) occuring
in GZ's effective action in the frequency domain (instead of the time donaain
GZ do), we also achieve a more accurate treatment of recoil effedtb. this
change, GZ'’s approach reproduces, in a remarkably simple wagtdhdard,
generally accepted result for the decoherence rate.
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1. Introduction

Afew years ago, Golubev and Zaikin (GZ) developed an influenceifumed
approach for describing interacting fermions in a disordered conduthir
key idea was as follows: to understand how the diffusive behavior dfemg
electron is affected by its interactions with other electrons in the system, which
constitute its effective environment, the latter should be integrated out, leading
to an influence functional, denoted by (““r+51) in the path integrayf)’R
describing its dynamics. To derive the effective actithy; + S;), GZ devised
a strategy which, when implemented with sufficient careperly incorporates
the Pauli principle-this is essential, since both the particle and its environment
originate from the same system of indistinghuishable fermions, a featurl whic
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116 FUNDAMENTAL PROBLEMS OF MESOSCOPIC PHYSICS

makes the present problem conceptually interesting and sets it aparalirom
other applications of influence functionals that we are aware of.

GZ used their new approach to calculate the electron decoherengg (ate
in disordered conductors, as extracted from the magnetoconductatioe in
weak localization regime, and found it to be finite at zero temperature [1, 2, 3
4,5, 6],75‘2(T —0) = fyvaZ, in apparent agreement with some experiments
[7]. However, this result contradicts the standard view, based on thie afo
Altshuler, Aronov and Khmelnitskii (AAK) [9], that 2" (T" — 0) = 0, and
hence elicited a considerable and ongoing controversy [8]. GZ's wak
widely questioned, for example in Refs. [10, 11, 12, 13, 14, 15], withribet
detailed and vigorous critigue coming from Aleiner, Altshuler and Gerstrenz
(AAG) [16] and Aleiner, Altshuler and Vavilov (AAV) [17, 18], but G£&fected
each critique [3, 4, 5, 8] with equal vigor. It is important to emphasize theat th
debate here is about a well-defined theoretical model, and not ab@uirexnts
which do or do not support GZ’s claim.

The fact that GZ’s final results forgz(T) have been questioned, however,
does not imply that their influence functional approach, as such, isfnad-
tally flawed. To the contrary, we show in this paper that it is sound in principle
and that the standard result,"(T") can be reproduced using GZ's method,
provided that it is applied with slightly more care to correctly account favitec
effects (i.e. the fact that the energy of an electron changes whenoittesr
emits a photon). We believe that this finding conclusively resolves the con-
troversy in favor of AAK and company; hopefully, it will also serve toikev
appreciation for the merits of GZ’s influence functional approach.

The premise for understanding hoz@/‘\K can be reproduced with GZ's meth-
ods was that we had carried out a painfully detailed analysis and ratienv
of GZ's calculation, with the aim of establishing to what extent their method is
related to the standard Keldysh diagrammatic approach. As it turned out, the
two methods are essentially equivalent, and GZ obtained unconventisntisre
only because a certain “Pauli factdid — 25") occuring inSi was not treated
sufficiently carefully, wherg? is the single-particle density matrix. That their
treatment of this Pauli factor was dubious had of course been undeaitab
emphasized before: first and foremost it was correctly pointed ou®itiiht
GZ's treatment of the Pauli factor caused their expression&érto aquire an

artificial ultraviolet divergence, which then produces the taﬂ"ﬁz, whereas

no such divergence is present in diagrammatic calculations. GZ'’s treatment
of (6 — 2p%) was also criticized, in various related contexts, by several other
authors [10, 11, 14, 15, 17]. However, none of these works (ifrguour own

[14], which, in retrospect, missed the main point, namely recoil) had attempted
to diagnose the nature of the Pauli factor problsith sufficient precision to
allow a successful remedy to be devised within the influence functional-frame
work



Influence functional calculation of, 117

This will be done in the present paper. Working in the time domain, GZ
represents — 2p°(t)) asl — 2ng[ho(t)/2T], wheren, is the Fermi function
andh(t) the free part of the electron energy. GZ assumed/thét does not
change during the diffusive motion, because scattering off impurities iselas
Our diagnosis is that this assumptienintentionally neglects recoil effedias
first pointed out in [10]), because the energy of an electron actuadly deange
ateachinteraction vertex, i.e. eachtime itemits or absorbs a photon. Thiyreme
(not found in [10]) is to transform from the time to the frequency domain, in
which (§ — 25Y) is represented by — 2ng[A(z — ©)] = tanh[A(z — ©)/2T],
wherehi is the energy change experienced by an electron with erfergy
an interaction vertex. Remarkably, this simple change of representation fro
the time to the frequency domain is sufficient to recoy&‘?‘K. Moreover, the
ensuing calculation is free of ultraviolet or infrared divergencies parmit-offs
of any kind have to be introduced by hand.

The present paper has two main aims: firstly, to concisely explain the nature
of the Pauli factor problem and its remedy; and secondly, to presentsptaeent
calculation of~,, using only a few lines of simple algebra. (Actually, we
shall only present a “rough” version of the calculation here, whichagyces
the qualitative behavior of A% (T'); an improved version, which achieves
quantitative agreement with AAK’s result for the magnetoconductance [with
an error of at most 4% for quasi-1-D wires], will be published sepbrét8]).

We have made an effort to keep the paper reasonably short and toiihe po
and not to dwell on technical details of interest only to the experts. Relgetta
this has had the consequence that the present paper is not fully stfrem: it
builds on an extensive and very detailed analysis that could not andtiaesen
included here. These details have been written up in the form of five lengthy
appendices. Although the present paper is written such that, once ce@sc
its starting point [Egs. (8.1) to Eq. (8.4)], the rest of the discussion asityee
followed step by step, readers interested in an honest derivation dbitieg
point will have to consult the appendices. For those readers (prefuthab
majority) with no time or inclination to read lengthy appendices, a concise
appendix at the end of this paper summarizes (without derivations) the main
steps and approximations involved in obtaining the influence functional. We
shall publish the five long appendices B to F separately [20], in the beliedlitha
relevant details should be publicly accessible when dealing with a conggover
for the benefit of those willing to “read the fine print”. Below we shall rater
these appendices as though they were a part of the present papérjedly
summarize their contents here:

In App. B, we rederive the influence functional and effective acti@ds fol-
lowing their general strategy in spirit, but introducing some improvements. The
most important differences are: (i) instead of using the coordinate-momentu
path integral[D(RP) of GZ, we use a “coordinates-only” versiqﬁﬁ/R,
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since this enables the Pauli factor to be treated more accurately; and (i), we
are careful to perform thermal weigthing at an initial time— —oo (which

GZ do not do), which is essential for obtaining properly energy-ayestax-
pressions and for reproducing perturbative results: the standayddienatic
Keldysh perturbation expansion for the Cooperon in powers of the citena
propagator is generated Before disorder averaginghe influence functional

is expanded in powers diSr + Sr). In App. C we review how a general
path integral expression derived for the conductivity in App. B carebeitten

in terms of the familiar Cooperon propagator, and thereby related to the stan-
dard relations familiar from diagrammatic perturbation theory. In particular,
we review the Fourier transforms required to get a path intégfgiroperly de-
pending on the energy varialie relevant for thermal weighting. Appendix D
gives an explicit time-slicing definition of the “coordinates-only” path intégra
/D'R used in App. B. Finally, for reference purposes, we collect in Apps. E
and F some standard material on the diagrammatic technique (although this is
bread-and-butter knowledge for experts in diagrammatic methods andeéeaila
elsewere, it is useful to have it summarized here in a notation consistent with
the rest of our analysis). App. E summarizes the standard Keldyshaabpiro

a way that emphasizes the analogy to our influence functional appraadh,
App. F collects some standard and well-known results used for diagrammatic
disorder averaging. Disorder averaging is discussed last for argasdn: one

of the appealing features of the influence functional approach is thatohos
the analysis can be performedforedisorder averaging, which, if at all, only
has to be performed at the very end.

2. Main results of influence functional approach

We begin by summarizing the main result of GZ's influence functional ap-
proach. Our notations and also the content of of our some formulas are no
identical to those of GZ, and in fact differ from their's in important respec
Nevertheless, we shall referto them as “GZ’s results”, since we ne)aetived
them (see App. B [20] for details) in the spirit of GZ's approach.

The Kubo formula represents the DC conductivityt in terms of a retarded
current-current correlatof{7(1),7(2)]). This correlator can (within various
approximations discussed in App. B.5.6, B.5.7 and App. B.6.3) be expresse
as follows in terms of a path integr&F representing the propagation of a pair
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of electrons with average energy, thermally averaged over energies:
2 . o
opc = E/dmjnl'J22f/(d€)[—”/(h€)i/ dTP2112' er(7)
0

RF IY—p RB ey, ) )
Pyirse(r) = y[ e % i UDI(R) er i3 —58) -8+
RF(=3)=ry J RB(—3)=m2

(8.1)
The propagato?%f,:’gﬁ(f), defined for a given impurity configuration, is written
in terms of a forward and backward path inte D/(R) between the

specified initial and final coordinates and times, which gives the amplitude for
an electron with energhe to propagate frone,, at time——T tor; atl 5T, times

the amplitude for it to propagate from: at tlme Ttory at——r We shall call
these the forward and backward paths, respectively usmg an indeX¥’, B

to distinghuish them.S§ = S(f/B are the corresponding free actions, which
determine which paths will dominate the path integral. The weak localization
correction to the conductivity, ), arises from the “Cooperon” contributions to
opc for which the coordinates;, v}, 2 andr? all lie close together, and which
feature self-returning random walks through the disordered potemiiddtape

for pairs of pathsR*/Z, with pathB being the time-reversed version of pdth

i.e. RF(t3) = RP(—t3) for t € (—i7, 7). The effect of the other electrons

on this propagation is encoded in the influence functiendl®z+51) occuring
in Eq. (8.1). The effective actioiSr + Sy turns out to have the form [for a
more explicit version, see Eq. (8.A.7) in the appendix]:

S t3, L£a
iSR(T :—% / dt3a/ dts,, §g4' . (82
SI( / =F,B % / 3ady

Heres, standsfosF/B = +1,andtheshorthandl, . = L[ts, —ts ,, R(t3,)—

RY (ta,, )] describes, in the coordinate-time representation, an interaction prop-
agator linking two vertices on contoursanda’. It will be convenient below to
Fourier transform to the momentum-fregency representation, wheredpa-pr
gatorsC and£®’ can be represented as followdd) (dg) = (dw dq)/(2m)*]:

EKOAQ, = /(dw)(dq)ei<q' [Ra(t;aa)—Ra (ta,, )i —w(taa—ma,)) E?(@), (8.3a)

S o0\ AR
sy, {[(55 %)L ’ (8.3b)

/(da))(dq)elsa/ (q R*(t3,)—R” (t4a,)] —w(t3, —ta ,)) E%, ((I)) ' (83C)
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Figure 8.1. Structure of vertices on the forward or backward contours of Kelggsturbation

theory. F: the combination§% , L%, andGZE , L% occur if vertex 4 lies on the upper

forward contour. B: the combination&;, ;G ;. andLf ;G4 ;. occur if vertex 4 lies on
the lower contour. Arrows point from the second to first indices of pgapors.

[Note the sigrs, in the Fourier exponential in Eq. (8.3c); it reflects the opposite
order of indices in Eq. (8.3b), namely 34 fBrvs. 43 forB.] Here LK is the
Keldysh interaction propagator, whil&/ | to be used when timg , lies on

the forward or backward contours, respectively, represengceffe” retarded

or advanced propagators, modified by a “Pauli fact@r— 27°) (involving

a Dirac-deltad; and single-particle density matri&% in coordinate space),

the precise meaning of which will be discussed belni&R’A(w) denote the
Fourier transforms of the standard Keldysh, retarded, or advants@dtion
propatators. For the screened Coulomb interaction in the unitary limit, they are
given by

0

R a4 . Bl—in  [Dy@)

Liw) = [Lg@) =- WET o) (8.4a)

—K , _ . _ —R, _

Ly (@) = 2icoth(hw/2T)Im[Lq(@)], (8.4b)

=0, _ . 1 =0, .\ 1

Cqlw) = e D‘?(”)_—Eg—m’ (8.4c)
Ey = Dg’, Eq=Dq +n, (8.4d)

where, for later reference, we have also listed the Fourer transfdrtimes bare
diffuson D" and Cooperor@0 (wherevg is the dephasing rate of the latter in
the presence of a magnetic field,the diffusion constant andthe density of
states per spin). Finallng (w) in EQ. (8.3c) is defined as

LEP (@) = tanh[h(e — @)/2T] L5 (@) (8.4€)

wherefic is the same energy as that occuring in the thermal weighting factor
[—n/(he)] in the first line of Eq. (8.1).

Via the influence functional, the effective action (8.2) concisely incaiss
the effects of interactions into the path integral approash.describes the
classicalpart of the effective environment, and if one would replace the factor
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coth(Aw/2T)in EK( ) by 2T/ hwo (as is possible for high temperatures) it cor-

responds to the contribution calculated by AAK [9]. With, GZ succeeded to
additionally also include the quantum part of the environment, and in particular
via the Pauli facto(o — 25°), to properly account for the Pauli principle.

Casual readers are asked to simply accept the above equations ag startin
point for the remainder of this paper, and perhaps glance throughApp.
get an idea of the main steps and approximations involved. Those interested
in a detailed derivation are referred to App. B (whéfﬁ/f are obtained in
Sec. B.5.8). It is also shown there [Sec. B.6] that the standard resudis of
agrammatic Keldysh perturbation theory can readily be reproduced frem th
above formalism by expanding the influence functiondf>z+51)/% in pow-
ersof(iSr+S5)/h. For present purposes, simply note that such an equivalence
is entirely plausible in light of the fact that our effective action (8.2) is linear
in the effective interaction propagatofs a structure typical for generating
functionals for Feynman diagrams.

3. Origin of the Pauli factor

The occurence of the Pauli factef — 27°) in Sy was first found by GZ in
precisely the form displayed in the position-time representation of the efecti
action used in Eqg. (8.2). However, their subsequent treatment of th fac
differs from ours, in a way that will be described below. In particulasyttid
not represent this factor in the frequency representation, as in oUBEe),
and this is the most important difference between our analysis and theirs.

The origin of the Pauli factor in the form given by our Eq. (8.4€e) cailyas
be understood if one is familiar with the structure of Keldysh perturbation
theory. [For a detailed discussion, see Sec. B.6.2.] First recall twa exac
relations for the noninteraction Keldysh electron propagator: in the otaied
time representation, it contains a Pauli factor,

(8.5a)
which turns into aanh in the coordinate frequency representation:
GE (@) = tanh(ho/2T) |G (@) - G{(@)] . (8.5b)

Now, in the Keldysh approach retarded or advanced interaction patgpag
always occur [see Fig 8.1] together with Keldysh electron propagaiotise
comblnatlonsGK4 £34F or£4B3GﬁjB where the indices denote coordinates
and times. [leeW|se the Keldysh interaction propagators always come in the
combmatlon{JR £34F orE4Bgé -] Inthe momentum-frequency repre-

sentation, the combinations mvolvn@K therefore turn intc /A( )[GF -
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G q_q\E — @) tanh[A(s —w)/2T]. Thus,in the frequency representation the
Pauli factor is represented asnh|[h(¢ — w)/2T]. Here the variabl&s repre-
sents the energy of the electron line on the upper (or lower) Keldyshwonto
before it enters (or after it leaves) an interaction vertex at which itgygroe-
creases (orincreases) hy [see Fig. 8.1]. The subtractionofin the argument

of tanh thus reflects the physics of recoil: emitting or absorbing a photon causes
the electron energy to change hy, and it is this changed energyz — w) that
enters the Fermi functions for the relevant final or initial states.

Of course, in Keldysh perturbation theohy, will have different values from
one vertex to the next, reflecting the history of energy changes of amaglec
line as it proceeds through a Feynman diagram. It is possible to neglect this
complication in the influence functional approach, if one so choosedways
using one and the same energy in Eq. (8.4€), which then should be dbosen
be the same as that occuring in the thermal weighting fdetar (he)], i.e.
hé = he. This approximation, which we shall henceforth adopt, is expected
to work well if the relevant physics is dominated by low frequencies, athvhic
energy transfers between the two contours are sufficiently shjalHe) < T,
so that the electron “sees” essentially the same Fermi function throughout its
motion].

Though the origin and neccessity of the Pauli factor is eminently clear when
seen in conjunction with Keldysh perturbation theory, it is a rather nonirivia
matter to derive it cleanly in the functional integral approach [indeed, this
is the main reason for the length of our appendices!]. The fact that &Z go
it completely right in the position-time representation of Eq. (8.2) is, in our
opinion, a significant and important achievement; unfortunately, howéver
did not occur to them to use the frequency representation (8.4e).

4. Calculating r, ala GZ

To calculate the decoherence rate= 1/7,, one has to find the long-time
decay of the Cooperon contribution to the propagégq(r) of Eg. (8.1). Todo
this, GZ proceeded as follows: using a saddle-point approximation fquettine
integral for the Cooperon, they replaced the sum over all pairs ofskifning

pathsR*/B(ts,, ) by just the contributiore™# (7 +SD()y _ of the classical

“random walk” pathsRy(t) picked out by the classical actior#, namely
RP(t3,) = Rw(ts,) and RP(t3,) = Rw(—t3,), for which the paths on
the forward and backward Keldysh contours tinee-reversedoartners. The
subscript “rw” indicates that each such classical path is a self-returandom
walk through the given disorder potential landscape (aig, means averaging
over all such paths. Next, in the spirit of [21], they replace the avevhtee
exponent over all time-reversed pairs of self-returning random walkshe
exponent of the average; 7'("), whereF(r) = (iSr + S;)w (cf. Eq. (67)
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of [2]). This amounts to expanding the exponent to first order, theragirg,
and then reexponentiating. The functibr) thus defined increases with time,
starting fromF'(0) = 0, and the decoherence timg can be defined as the time
at which it becomes of order one, iB(7,) ~ 1.

To evaluate(iSr + S;)w, GZ Fourier transform the functionéga% =
L[tss, R*(t3) — R (t4)] occuring inSg,;, and average the Fourier exponents
using [21] the distribution function for diffusive motion, which gives pabbity
that a random walk that passes paify(t4) at timet, will pass pointRyw(t3)
attimets, i.e. that it covers a distand@ = Ryw(t3) — Ruw(t4) in time |t34]:

., . N -
(ARt -Fenl)) /ddR<D|t ’) o~ F2/(D]tau]) ig R
w 34

_ 6—62D|t34| N ég(|t34|) — 6_E6|t34| . (8.6)

(Heretsy = t3 — t4.) The arrow in the second line makes explicit that if we
also account for the fact that such time-reversed pairs of paths jphasked by

a magnetic field, by adding a facter? %1l the result is simply equal to the
bare Cooperon in the momentum-time representation.

Actually, the above way of averaging is somewhat inaccurate, as wasg@oin
out to us by Florian Marquardt: it neglects the fact that the diffusivedtajes
betweents andt, are part of a largerself-returningtrajectory, starting and
ending atr; ~ ry at timeszp%r. It is actually not difficult to include this fact
[19], and this turns out to quantitatively improve the numerical prefactor fo
(e.g.in Eq. (8.18) below). However, for the sake of simplicity, we shak he
content with using Eq. (8.6), as GZ did. B

Finally, GZ also assumed that the Pauli factér— 2°) in Sy remains
unchanged throughout the diffusive motion: they use a coordinate-rmiomen
path integral/ DR [DP [instead of our coordinates-only versigfrﬁ’R], in
which (6 — 25°) is replaced byl — 2ng(hg)] = tanh(ho/2T), and the free-
electron energyho(R(t,), P(t,) is argued to be unchanged throughout the
diffusive motion, since impurity scattering is elastic [cf. p. 9205 of [2}: “
depends only on the energy and not on time because the energy isveshser
along the classical path”]. Indeed, this is thetweerthe two interaction events
at timests andi4, so that the averaging of Eq. (8.8)permissible. However,
as emphasized above, the full trajectory stretches fram to 4 to 5 to 1,
and the electron energyoeschange, byt#w, at the interaction vertices at
t4 andts. Thus,GZ's assumption of a time-independent Pauli factor neglects
recoil effects As argued in the previous section, these can straightforwardly
taken into account using Eq. (8.4e), which we shall use below. In @intra
GZ's assumption of time-independentamounts dropping the-#w in our
tanh[h(e — @)/2T] function.
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If one uses GZ's assumptions to average Eq. (8.2), but uses ther prope
tanh[h(e — @)/2T] function, one readily arrives at

<i§R>I’W 1. - — ,Cg(@) self vert
~ = R —51 dw d - T ’ 87
{ (50 } 2 e{ 3 /( ) q){cf(w) } [f f ]( )] (8.7)

where fséif — fvert gre the first and second terms of the double time integral
/ dts / dise zwm lq~[Rw(t3)—Rw(t4)}_eiq‘[Rrw(—ts)—wa(t4)]> (8.8)
T T rw
2 2

corresponding to self-energy & o/ = F) and vertex ¢ # o’ = F) contri-
butions, and th€ Re[ | in Eq. (8.7) comes from adding the contributions of
a’ = F andB. Performing the integrals in Eq. (8.8), we find

fself(T) _ Uq(—a))r I [@g(_@)f |:€77'(Eti+’i@) _ 1} , (8.9a)

—i0T __ —FEgt _
%@ & L e 1} (8.9b)

fr) = Cql@)

—1iw Ey

Ofalltermsin Egs. (8.9), the first term ¢%¢"", which s linear inr, clearly grows
most rapidly, and hence dominates the leading long-time behavior. Denoting

the associated contribution to Eq. (8.7) byiSr/Sr)rm o> = Qe
the corresponding ratag/l Sell 5btained from Egs. (8.7) and (8.9) are:

Rself _ N 1A h(e — @) % (EO )
Iself - _ @ L
Yo = /(dw)(dq) coth [2T] 2Re 2 B0 (B + i) (8.10Db)

Let us compare these results to those of GZ, henceforth yging 0. Firstly,
both oury’*®" and~%**" are nonzero. In contrast, in their analysis GZ con-
cluded that(SR>rW = 0. The reason for the latter result is, evidently, their
neglect of recoil effects: indeed, if we drop théiw from thetanh-factor of
Eqg. (8.10a), we would find/fj = 0 and thereby recover GZ’s result, since the
real part of the factor in square brackets is oddin

Secondly and as expected, we note that Eq. (8.1Olf>/)£f?ﬁJf agrees with that
of GZ, as given by their equation (71) of [2] fay,,, i.e. 5% = 1S%. [To
see the equivalence explicitly, use Eq. (8.A.9).] Noting that fli-integral
in EqQ. (8.10b) evidently diverges for large GZ cut off this divergence at/ e
(arguing that the diffusive approximation only holds for time-scales lotigar
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Tel, the elastic scattering time). For example, for quasi-1-dimensional wires,
for which [(dg) = a=2 [ dg/(27) can be useddaf being the cross section, so
thato; = a?05%% s the conductivity per unit length, withS~9e = 2620 D),

they obtain (cf. (76) of [2]):

1 62 /2D %el (d@> cotls [@] N 62 2D 2T1 / Teng’Z
2T

~ &IV T
wo1 \ Tel h T

(8.11)

[The use of a self-consistently-determined lower cut-off is explained ir6he
Thus, they obtained a temperature-independent contribuﬁS‘ﬁ from the +1
term, which is the result that ingited the controversy.

However, we thirdly observe that, due to the special form of the retarded
interaction propagator in the unitary limit, the real parts of the last factors in
square brackets of Eqgs. (8.10a) and (8.10b) are actaglial (for vz = 0).

Thus, the ultraviolet divergence qﬁse'f is cancelledby a similar divergence

of sz«z,sen. Consequently, the total decoherence rate coming from self-energy

terms, 13" = L% 4 15" is free of ultraviolet divergencies. Thus we

conclude that the contributicryg’GZ found by GZ is an artefact of their neglect
of recoil, as is their claimed “decoherence at zero temperature”.

5. Dyson Equation and Cooperon self energy

The above results for**" + 75" turn out to agree completely with those

of a standard calculation of the Cooperon self enefgysing diagrammatic
impurity averaging [details of which are summarized in Appendix F]. We shall
now summarize how this comes about.

CalculatingX is an elementary excercise within diagrammatic perturbation
theory, first performed in [22]. However, to facilitate comparison with the
influence functional results derived above, we proceed differemlg: have
derived [Sec. B.6.1] a general expression [23], before impurityaaveg, for

the Cooperon self-energy of the forh= 3", , [ifla/ + iaRa,], which keeps

track of which terms originate froib z or S;, and which contours, o’ = F/B
the vertices sit on. This expression agrees, as expected, with thatdyisKe
perturbation theory, before disorder averaging; it is given by E&.1®) and
illustrated by Fig. 8.A.10 in App. A. We then disorder average using standar
diagrammatic techniques. For reference purposes, some details of tigiststra
forward excercise are collected in Appendix F.2.

For present purposes, we shall consider only the “self-energtribon
tions” (e = a') to the Cooperon self energy, and neglect the “vertex con-

tributions” (@ # d’), since above we likewise extracta@/ T from the self-
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energy contributions to the effective actioffiz, [)adingsell  after impurity

averaging, the Cooperon then satisfies a Dyson equation of standard fo
self self —self

Cq (w):C (w )+C (w)Eg (w)Cy (w), with standard solution:

_ 1
M) = , (8.12)
a Eq—iw — ize”(w)

whereER/I self _ Z ER/I self with Egg;elf(w) _ [iiggelf(—w)} *, and
<1 self 1 N hw —R,_\150 _
Eq}eF(w) = ~7 /(dw)(dq) coth [ﬁ] Im[ﬁq( )] Cq_q(w -w),
—Rself 1 h(e + 3w — @) R,

Sarrw) = 3 / (dw)(dq){tanh[ =@ 1)

In Eq. (8.13), the terms proportional (6_70)2 [(EO)_l + (50)_1] stem from

the so-called Hikami contributions, for which an electron line changes from

GR/A 10 GA/E to GR/A, As correctly emphasized by AAG [16] and AAV [17],

such terms are missed by GZ's approach of averaging only over timeseeve

pairs of paths, since they stem from paths that are not time-reversed pair
Now, the standard way to define a decoherence rate for a Coopehafofm

(8.12) is as the “mass” term that survives in the denominator whenk, = 0,

ie. 1o — —55°(0) = —2Re [E?};R se”}. In this limit the contribution of

the Hikami terms vanishes |dent|cally as is easily seen by using the last of
Egs. (8.4a), and noting that RED")~1(D")2(D’)!] = Reli] = 0. (The
realization of this fact came to us as a surprise, since AAG and AAV hacbdrg
that GZ’s main mistake was their neglect of Hikami terms [16, 17], thereby
implying that the contribution of these terms is not zero, but essential.) The
remaining (non-Hikami) terms of Eq. (8.13) agree with the resulEfof AAV

[17] and reproduce Egs. (8.10) given above, in other words:

’Y;elf - izelf(o)] Tlh <’LSR n S]>Iead|ngself (8.14)

Thus, the Cooperon mass temilze'f( 0) agrees identically with the coefficient

of 7 in the leading terms of the averaged effective action of the influence func-
tional. This is no coincidence: it simply reflects the fact that averaging in the
exponent amounts to reexponentiating éaverage of the first order terwf an
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expansion of the exponential, while in calculating the self energy one o$eou
also averages the first order term of the Dyson equation. It is noteworthy,
though, that for the problem at hand, where the unitary limit of the interac-
tion propagator is considered, it suffices to perform this average sxely

over pairs of time-reversed paths — more complicated paths are evidently not
needed, in contrast to the expectations voiced by AAG and AAV [16,T7é.

latter expectations do apply, however, if one consideres forms of theditn

propagatorf?(@) more general than the unitary limit of (8.4a) (i.e. not pro-
<=self

portional to [52(@)]—1). Then, the Hikami contribution teSe = —%77(0)
indeed does not vanish; instead, by noting thatfer ¢ = vy the second line
of Eq. (8.13) can always be written aﬁe[ﬁg(@)] , We obtain

’Y;elf = %/(dw)(dQ) {COth{%} —i—tanh[%]}
—R, _

<im[Zg(@)] 2Eq

— 5 (8.15)
Eg)2 + w2

which is the form given by AAV [17].

0. Vertex contributions

Eg. (8.10b) for ;%" has the deficiency that its frequency integraiisared
divergent (foro — 0) for the quasi-1 and 2-dimensional cases, as becomes
explicit once itsg-integral has been performed [as in Eqg. (8.11)]. This problem
is often dealt with by arguing that small-frequency environmental fluctusition
that are slower than the typical time scale of the diffusive trajectoriesrara, f
the point of view of the diffusing electron, indistuingishable from a static field
and hence cannot contribute to decoherence. Thus, a low-fregoetudf -,
is inserted by hand into Egs. (8.10) [i.5.dw — f'w dw], and~,, determined
selfconsistently. This procedure was motivated in quite some detail by AAG in
Ref. [16], and also adopted by GZ in Ref. [2] [see Eq. (8.11) abddejvever,
as emphasized by GZ in a subsequent paper [3], it has the seriousadiatiat
it does not necessarily reproduce the correct functional form sCioperon
in the time domain; e.g., id = 1 dimensions, the Cooperon is known [9] to
decay as—(7/7)*? i e. with a nontrivial power in the exponent, whereas a
“Cooperon mass” would simply give /7.

A cheap fix for this problem would be to take the above idea of a self-
consistent infrared cutoff one step further, arguing that the Coapeitbdecay
ase~ "% () wherey$¢(r) is atime-dependerdecoherence rate, whose time-
dependence enters via a time-dependent infrared cutoff. Concrasahg



128 FUNDAMENTAL PROBLEMS OF MESOSCOPIC PHYSICS

Egs. (8.14) and (8.10), one would write

ve(r) = 2/;j(dw)w {Coth [%] —i—%szj:tstanh [W”

(dg) 1
x/ w DT (8.16)

It is straightforward to check [using steps analogous to those used below
obtain Eqg. (8.18)] that inl = 1 dimensions, the leading long-time depen-
dence isySe"(7) o /2, so that this cheap fix does indeed produce the desired

e=a(7/7)*"* pehavior.

The merits of this admittedly rather ad hoc cheap fix can be checked by doing
a better calculation: It is well-known that the proper way to cure the indrare
problems is to include “vertex contributions”, having interactions vertices on
opposite contours. In fact, the original calculation of AAK [9] in effead d
just that. Likewise, although GZ neglected vertex contributions in [2], they
subsequently included them in [3], exploiting the fact that in the influence
functional approach this is as straightforward as calculating the seifpene
terms: one simply has to include the contributionsite /S;)ny of the vertex
function— fV*"in Eq. (8.7), too. The leading contribution comes from the first
term in Eq. (8.9b), to be calledSr/S;)24"9ve" \which gives a contribution
identical to(iSg/S1)m 9>, but multiplied by an extra factor of “&7)
undertheintegral. Thus, if we collectall contributionsto Eq. (8.7) that haen
termed “leading”, our final result for the averaged effective actio?(iﬁ?R +

Sy)ading = o(7), with

Fy(r) = T/(daz)@ {coth {%] + tanh [h(z—;@)” (1 _ %)

(dg) 1
></ DT (8.17)

This is our main result: an expression for the decoherence funétjon)
that is both ultraviolet and infrared convergent, due to(theh + tanh) and
(1 — sin)-combinations, respectively, as will be checked below. Comparing
this to Egs. (8.16), we note tha}(7) has precisely the same formag:®(r),
except that the infrared cutoff now occurs in théiw) integrals through the
(1 — sin) combination. Thus, the result of including vertex contributions fully
confirms the validity of using the cheap fix replaceméyiti) — fl/T(da)),
the only difference being that the cutoff function is smooth instead of sharp
(which will somewhat change the numerical prefactor.of

It turns out to be possible to also obtain Eq. (8.17) [and in adddibthe
“subleading” terms of Eq. (8.7)] by purely diagrammatic means: to this end,
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one has to set up and solve a Bethe-Salpeter equation. This is a Dyson-typ
equation, but with interaction lines transferring energies between the uppe
and lower contours, so that a more general Coop@@:ﬁml, ), with three
frequency variables, is needed. Such an analysis will be publishedhelse
[19].

To wrap up our rederivation of standard results, let us perform thgratte
in Eq. (8.17) forE;(7) for the quasi-1-dimensional cade= 1. The [(dq)-
integral yieldso—3/2,/D/2/(c11). To do the frequency integral, we note that
since the(coth + tanh)-combination constrains the relevant frequencies to be
|h@| ST, the integral is dominated by the small-frequency limit of the inte-
grand, in whichcoth(Aw/2T) ~ 2T /hiw, whereaganh, making a subleading
contribution, can be neglected. The frequency integral then readilysyield

4 Tr/h 4 (7N
H0) = 3R WDn e () - e

so thatwe correctly obtain the known“(7/7#)** decay for the Cooperon. Here
g3(L) = (h/e*)o ;L2 represents the dimensionless conductance, which is
> 1 for good conductors. The second equality in Eq. (8.18) defipewhere

we have exploited the fact that the dependencé’obn 7 is a simpler?/2
power law, which we made dimensionless by introducing the decoherence time
7. [Following AAG [16], we purposefully arranged numerical prefastsuch

that none occur in the final Eq. (8.19) forbelow.] Setting- = 7, in Eq. (8.18)

we obtain the self-consistency relation and solution (cf. Eq. (2.38a) @& AA
[16]):

1 T/h 2o )2/3
L - . 8.19
% 9y D) G (Tezm (8.19)

The second relation is the celebrated result of AAK, which diverge§fes
0. This completes our recalculation 9£*¢ using GZ's influence functional
approach.

Eg. (8.18) can be used to calculate the magnetoconductande=fdrvia

aDrude 9] 5
obs(H) = — -2 / dr CO_y (1) e Fa(7) (8.20)
wvh  J
(Here, of course, we have to usg # 0 in C‘,Q:O(r). Comparing the result
to AAK'’s result for the magnetoconductance (featuring an Ai’ function fo
d = 1), one finds qualitatively correct behavior, but deviations of up to 2006 f
small magnetic fieldé{/. The reason is that our calculation was not sufficiently
accurate to obtain the correct numerical prefactor in Eq. (8.18). [GZadlid
attempt to calculate it accurately, either]. It turns out [19] that if the ayieca
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over random walks of Eq. (8.6) is done more accurately, following Mardjls
suggestion of ensuring that the random walkssaié-returning the prefactor
changes in such a way that the magnetoconductance agrees with thakKof AA
to within an error of at most 4%. Another improvement that occurs for this
more accurate calculation is that the results are well-behaved also fonfinite
which is not the case for our present Eq. (8.10a):~fgr# 0, the real part of

the square brackets contains a term proportionaktpE?, which contains an
infrared divergence ag — 0. This problem disappears if the averaging over
paths is performed more accurately [19].

7. Discussion and summary

We have shown [in Apps. B to D, as summarized in App. A] that GZ's
influence functional approach to interacting fermions is sound in principle,
and that standard results from Keldysh diagrammatic perturbation theory ca
be extracted from it, such as the Feynman rules, the first order terms of a
perturbation expansion in the interaction, and the Cooperon self energy.

Having established the equivalence between the two aproaches inlgenera
terms, we were able to identify precisely why GZ's treatment of the Paulirfacto
(6 — 2ﬁ°) occuringSy was problematic: representing it in the time domain as
tanh[hg(t)/2T], they assumed it not to change during diffusive motion along
time-reversed paths. However, they thereby neglected the physiacodf re.
energy changes of the diffusing electrons by emission or absorptidrotdips.

As aresult, GZ's calculation yielded the res(lf$?),, = 0. The ultraviolet
divergence ir(§§52>rw, which in diagrammatic approaches is cancelled by terms
involving atanh function, was thus left uncancelled, and instead was cut off at
@ ~ 1/7), leading to the conclusion thaf*(T" — 0) is finite.

In this paper, we have shown that the physics of recoil can be included
very simply by passing from the time to the frequency representation, in which
(6 — 27°) is represented byanh[hi(e — @) /2T]. Then(iSg)n is foundnot to
equal to zero; instead, it cancels the ultraviolet divergends g, so that the
total ratey,, = ~/ +~% reproduces the classical resylf** , which goes to zero
for T — 0. Interestingly, to obtain this result it was sufficient to average only
over pairs of time-reversed paths; more complicated paths, such aseejae
by Hikami terms, are evidently not needed. (However, this simplification is
somewhat fortuitous, since it occurs only when considering the unitary lfimit o
the interaction propagator; for more general forms of the latter, the cotitnib
of Hikami termsis essential, as emphasized by [16, 17].)

The fact that the standard result fgy canbe reproduced from the influence
functional approach is satisfying, since this approach is appealingly ateh
simple, not only conceptually, but also for calculating Indeed, once the form
of the influence functional (8.2) has been properly derived (whéiesithe hard
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work), the calculation ofiS + S;)n requires little more than knowledge of
the distribution function for a random walk and can be presented in just a fe
lines [Sec.4]; indeed, the algebra needed for the key steps [evaluafiti§. E)
to get the first terms of (8.10), then finding (8.10) and (8.17)] involvelsgus
couple of pages.

We expect that the approach should be similarly useful for the calculdtion o
other physical quantities governed by the long-time, low-frequencyietat
the Cooperon, provided that one can establish unambiguously thatdesui
include the contributions of time-reversed paths only — because Hikami-like
terms, though derivable from the influence functional approach taonoa
easily be evaluated in it; for the latter task, diagrammatic impurity averaging
still seems to be the only reliable tool.
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Appendix

Without dwelling on details of derivations, we outline in this appendix how
the influence functional presented in Sec. 2 is derived. (A similar summary
is contained in [14, 23]; however, it is incomplete, in that we have introdiuce
important improvements since.) Before we start, let us point out the two main
differences between our formulation and that of GZ:

(i) GZ formulated the Cooperon propagator in terms of a coordinate-momentum
path integralf DR [DP, in which (5 —27°) is represented d$ — 2n(ho)] =
tanh(ho/2T), where the free-electron enerdy(R(t,), P(t,)) depends on
position and momentum. This formulation makes it difficult to treat the Pauli
factor with sufficient accuracy to include recoil. In contrast, we achthee
latter by using a coordinates-only versigﬁ@’R, in which exact relations be-
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tween noninteracting Green'’s functions make an accurate treatment @filtie P
factor possible, upon Fourier-transforming the effective action to dwuincy
domain.

(il) Gz effectively performed thermal weighting at an initial timgthat is not
sent to—oo, but (in the notation of the main text) is setttp= —7/2; with the
latter choice, it is impossible to correctly reproduce the first (or highe@ror
terms of a perturbation expansion. GZ'’s claim [3] that they have regemtiu
these is incorrect (see end of App. C.3), since their time integrals-hay2 as
the lower limit, whereas in the Keldysh approach they run fresa to +-o0o. We
have found that with some (but not much) extra effois fpossible to properly
take the limitty — —oo, to correctly recover the first order perturbation terms
[App. C.3] and to express the conductivity in a form containing thermalkteig
ing in the energy domain explicitly in the form of a factpfds)[—n((he)] P*,
where P¢ is an energy-dependent path integral, obtained by suitable Fourier
transformation [App. B.6.3 and C.4].

1. Outline of derivation of influence functional
_ We consider a disordered system of interacting fermions, with Hamiltonian
H=Hy+ H;:
iy = [ da i (@) ho(a)ita) (8.A1)
A 62 ~ ~ ~ ~ ~
i = 5 [doydzy 1)) V0 (e2) o)

Here [dx = Y, [ dr, andy(z) = (r, o) is the electron field operator for
creating a spinr electron at positiom, with the following expansion in terms

of the exact eigenfunctiong, (x) of hy(x) = E—EV,% + Vi (r)—

imp

1[}(33) = sz(x)é)\, [ho(&?) — f)\]’lﬂ)\(l') = 0. (8.A.2)
A

The interaction potentiali3t = Vi"(]#; — 7|) acts between the normal-
ordered densities at andr,. The Kubo formula for the DC conductivity of a
d-dimensional conductor gives

x1:x1/] ’

j11/722/ ((,()0) :/ dtlzeiw()h?e(t12) 0[11/722/} 5 (8A3)

opc = —Re [ lim T ; /dm Jiv 'j22’j11’,22(W0)
1
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N 1 . . .
Chro) = ﬁ<[¢ Tty 21)P(tr, 21), T (t2, 22 ) (2, 22)]) 1,

wherej;;r = Zeh(Vl — Vy,) and a uniform applied electric fiel# (w)

was represented using uniform, time-dependent vector potedtialy) =
iwgA(wo). A path integral representation 6,1/ 5o, can be derived using
the following strategy, adapted from GZ’'s Ref. [2]: (1) introduce arseu
term into the Hamiltonian, in which an artificial source fieig, couples to

Pl (ta, x2)1(ta, 22), and writeC[11/ 291 as the linear response to the source
field 592/ Of the single-particle density matrjx; = ()1 (t1, z1/)ib(t1, 21)) 5.

(2) Decouple the interaction using a Hubbard-Stratonovitch transformation
thereby introducing a functional integral over real scalar fiéfgsz, the so-
called “interaction fields”, defined on the forward and backward Kéidym-
tours, respectively; these then constitute a dynamic, dissipative envinbnme
with which the electrons interact. (3) Derive an equation of motiorptor,

the single-particle density matrix for a given, fixed configuration of thedield
Vr/p, and linearize it invy2, to obtain an equation of motion for the linear
responsespy;, (t) to the source field. (4) Formally integrate this equation of

motion by introducing a path integrﬁlﬁ’(R) over the coordinates of the sin-
gle degree of freedom associated with the single-particle density rﬁé{flix

(5) Use the RPA-approximation to bring the effective actifynthat governs

the dynamics of the fieldgy, 5 into a quadratic form. (6) Neglect the effect of
the interaction on the single-particle density matrix whereever it occurs in the
exponents occuring under the path intedriP’R, i.e. replacei}; there by the

free single-particle density matrix

~

Py = (D (@) (@))o = Y Wi (@) ealzi) no(&r) | (8.A.4)
A

where thermal averaging is performed usiigho = Tre[~#H0 0]/ Tr[e=#Ho].

(7) Perform the functional integral (which steps (5) and (6) haveessd Gaus-
sian) over the field¥, g; the environment is thereby integrated out, and its ef-
fects onthe dynamics of the single particle are encoded in an influendefuaic

of the forme~(5~+51), The final result of this strategy is thib: - 11/ C11/,22]

can be written as [cf. (11.49)]

. gl
/dﬂcg j22/ . j11/C[11/722/] = /d'rOF,OB ﬁgFOB#O %_; D/(R) (8A5)
F B

1] 14 . R s
% ﬁ{ [J(t2F) —J(tQB)}J(tl)e [iSr+S1](t1,t0)/
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Wherefﬂgﬁ’(R) is used as a shorthand for the following forward and back-
ward path integral between the specified initial and final coordinates anst time

i 7 RE(tF)=rF .

ﬂ‘ "B OD(R)... = / T BRF (1) SE U AT
jr JIB RF(t])=r]
B

RP(tP)=rl .
y / (t7)=mr ﬁ'RB(th) GOV
RB(tJB):'r]-B

(8.A.6)

The complex weighting functionaf(5s —5¢) occuring therein involves the ac-
tion for a single, free electron. Expression (8.A.5) has a simple interpnetatio
thermal averaging Witﬁgﬁ attimet, (for which we take the limit-> —o0) is fol-

lowed by propagation in the presence of interactions (desAcribed[b‘iﬁﬁLSI])
from timet, up to timet;, with insertions of current verticegt, ) at timet,
on either the upper or lower Keldysh contour.

For the purpose of calculating the Cooperon propagator, we now make the
following approximation in Eq. (8.A.5) [referred to as “approximation (ii)” in
App. B]: For the first or second terms, for which the current vertesuce
at timet,, on contoura = F or B respectively, we neglect all interaction
vertices that occur on treamecontoura at earlier timess, or ts, € [to, t2,];
however, for the opposite contour containing no current vertex, wedaec
interaction vertices foall timese [to, t1], with ¢g — oco. [This turns out to
be essential to obtain, after Fourier transforming, the proper thermahtiregg
factor [—n((he)] occuring in Eq. (8.0), see App. C.3.] The rationale for this
approximation is that, in diagrammatic language, this approximation retains
only those diagrams for whichoth current verticeg,o, andj,,/ are always
sandwiched between@”- and aG*-function; these are the ones relevant for
the Cooperon. The contributions thereby neglected correspond to-ttedled
“interaction corrections”. [If one so chooses, they lattan be kept track of,
though.]

This approximation (ii) is much weaker than the one used by GZ at a similar
point in their calculation: to simplify the thermal weighting factor describing
the initial distribution of electrons, namely to obtain the explicit fagigiin
Eq. (49) of [2], they set, — t5 (theirt’ corresponds to our), and thereby
perform thermal weighting at tim&, instead of at-co. As a consequence,
in their analysis all time integrals have as lower limit, which means that
(contrary to their claims in [3]) they did not correctly reproduce the Kdidys
first order perturbation expansion f6[r11/,22,}, in which all time integrals run
to —oo. A detailed discussion of this matter is given in App. B.3. [Contrary to
our initial expectations, but in agreement with those of GZ, it turns out, tioug
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that the choice ofy does not to have any implications for the calculationof
which does not to depend on whether one choggest, or sends it to—oo.]

Having made the above approximation (i), the effective actidh; + S;)
occuring in Eqg. (8.A.5) is found to have the following form (we use the natatio
SR/ S to write two equations with similar structure in one line, and upper or
lower terms in curly brackets refer to the first or second case):

~ ~ tl tl ~ ~
[iSr/Si](t1,t0) = > / dts / dty (iL"/L7)3,4,, (8.A.7)
aa! Y10 to
=p = ) < 5 — 27°4.1 SR/K
L /LY )30, = —%i O3 53F3F{[ 5, j“F“F } LYY, (8.A8a)
FaF

SR F ) 5 —25%, 1. = .
GL" /L )3p00 = L 034{[ P WF}ﬁ?éﬁ 03,3,  (8-A.8b)
dpdp

s ok (B—20%
(ZLR/L[)3F4B = :F%Z 034 63F3F [:314;:3}; { [ Sip ]4343 } ’ (8A8C)
4p4p

iR L AAJK % 6 —2p°;
(L /L )30 = 5 O3 £f;§{; 03535 { | gfp Jinas } . (8.A.8d)
ipdp

Heredy = 65,0,6(r; — ;) and(LBAK), - = (LRAK) (4, —t; 72 (t:,) —

la

7’33/ (tja,)) are the standard retarded, advanced and Keldysh interaction propa-
gators. For each occurrence in Eqgs. (8.A.8) of a pair of indices, aeuwu
bar, one with, e.gl, and4,, the corresponding coordinategandr¢ are both
associated with theametime ¢4, and integrated overf dr{dr¢, in the path
integral [ D(R). (This somewhat unusual aspect of the “coordinates-only”
path integral used in our approach is discussed in explicit detail in ApipiD;
needed to account for the fact that the density-maitiis non-local in space,
and arises upon explicitly performing theD P momentum path integral in
GZ’s formulation.) They; functions on the right hand side of Egs. (8.A.8) will
kill one of these double coordinate integrations at time

Egs. (8.A.7) and (8.A.8) are the main result of our rederivation of the-influ
ence functional approach. They are identical in structure (includingsgd
prefactors) to the corresponding expressions derived by GZ (&8jsand (69)
of [2]), as can be verified by using the relations

—62]%@' = Eg = Eﬁ, €2I~ij = €2I~j‘ = —%ZZ?, (8A9)
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to relate our interaction propagatcﬂfg to the functionsk; and/; used by GZ.
However, whereas Eqs. (68) and (69) of [2] are written in a mixeddinate-
momentum representation in which it is difficult to treat the Pauli factors
(6 — 2pY) sufficiently accurately, our expressions (8.A.8) are formulated in
a coordinates-only version. Formally, the two representations are fuliy-eq
alent. The key advantage of the latter, though, is that passing to a cderdina
frequency representation (which can be dbatredisorder averaging, allows
us to sort out the fate ab — 27°), as discussed in Sec. 3 [and extensively in
App. B.6.3].

2. Cooperon self energy before disorder averaging

From the formalism outlined above, it is possible to recover the standard
results of diagrammatic Keldysh perturbation thebefore disorder averaging
by expanding the path integral (8.A.5) in powers of the effective a¢t’i§n +
S7). For example, using Egs. (8.A.8) [and being sufficiently careful withssig
see App. B.6.1) one readily obtains the following expressions for Coopsef

energys B/l = 3 ST summarized diagrammatically in Fig. 8.A.1:

- 3pd ; - - R -
(E?g F4F _ _? (GK/R)3F4FGZ_1433B(ER/EK)3F4F 7 (8.A.10a)

3B

- 3pd ; - - ~ ~ 1
(2%—{) e _% (GK/R)3F4FG34B3B(£R/%£K) ir (8.A.10b)

RPN 1 SA 1A
(ER/I rdr il GR3F1F (GE/A), (gA/%gK)ZLBZ’*F, (8.A.10c)

B3B

~ 3pdp b~ - L - -
(E%I ) = —— GR3rAr (GRINY o (LA)L5);,5, - (B.A.10d)
4ip3p 2

To obtain this, we exploited the fact that every vertex occuring in thetdféec
action is sandwidched between retarded propagators if it sits on the coper
tour, and advanced ones on the lower contour. The Keldysh functisedi@m
using some exact identities, valid (before impurity averaging) in the codedina
time representation: depending on whether a vertex attimsits on the for-
ward (time-ordered) or backward (anti-time-ordered) contale( F'/ B), the
factor (5 — 23°)L7/4 occuring inL , is sandwidched as follows (on the left
hand sides below, a coordinate integratﬁm4a, over the un-barred variable
at vertex 4 is implied):

(Gl G =200, | £, Gy = Glap (6 - 0) £, (0) GEL,, (9), BALLR)

g £1a (6= 207)3,0, Gy | = —Gihay (8) £,5(@) GEry (- @) (BALLD)

iBiB iBdB



Influence functional calculation of, 137

(a) 1g

y> XDy
N
ov]
Y> oY
N
ov]

(b) (%j o=

=T v
(©) (g)j;;f;

I
M3
=

+
MO
v9)

+
M
v9)

Figure 8.A.1. Firstorder contributionsto the irreducible self energy of the Coopdhastrating
Egs. (8.A.10). The arrows associated with each faét@ror[‘%j in Egs. (8.A.10) are drawn to
point from the second index to the firgtt ). Filled double dots denote the occurence of a factor
(8 — 2p)4 4, ON the upper contour dd — 25);,,4,, ON the lower contour. Bars on filled dots
are used to indicate the barred indices to which the interaction lines is codnBciit filled and
open single dots indicate a delta functtrihe open dots stand for delta functions that have been
inserted to exhaust dummy integrations, as discussed after Eq®8)(8TAe diagrams in (b) and
(c) coincide precisely with the those obtained by standard Keldysh diagatimperturbation
theory for the Cooperon self energy, as depicted, e.g., in Fig. 2 b{RE. (There, impurity
lines needed for impurity averaging are also depicted; the preserg figypurity averaging has
not yet been performed.)
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The left- and right-hand sides are written in the time and frequency domains,
respectively. To obtain Keldysh functions from the left-hand side esgives,

we exploit the fact that the upper or lower contours are time- or anti-time-
ordered to add an extraG“/®! = 0, and then exploited Egs. (8.5a) to obtain a
factor+G*.

3. Thermal averaging

It remains to figure out how the thermal weighting in the first line of Fig. 8.0
can be derived from our general path integral expression Eq. (8.Als is
a standard, if nontrivial, excercise in Fourier transformation, carngdadong
the lines of a similar analysis by AAK [9]) in App. B.6.4 and C.4. The result
is an equation for the conductivity similar to Eq. (8.A.5), but with a more
complicated path integral, given by

Py (o) = / 71 / (dw) e / drpeM2E39pl2 - (8.A.12)
Here the notatio®}? is used as a shorthand for the general double path integral

. REGD)=rf (ROGE)=rf e e
P435012j[ f’( D'(R) e liSr+S1/h (8 A.13)

RE(t])=r] JRB(t)=rf

ranging from time" to+!” on the forward contour (to be called “forward piece”)
and from¢? to t£ on the backward contour (to be called “backward piece”),
and the time integration variables in Eq. (8.A.12) are defined as follows:

my =3[ — )+ (F — D)), T2 = 1[0 +45) - (&F +4D),

T = (tF =5y — (8 —tB) . (8.A.14)
[The notation forP, 2 < (r12) takes it to be understood that the indi¢e®’, 21')
refer only to position coordinates, whereas the time arguments?’, ¢,
tf are as indicated in Eq. (8.A.13), and are convertedi4072 and 72 via
Eq. (8.A.14).] .

We need to consideiP)3 ) . only in the limitry — 71, since the Cooperon
contribution to it decays as I™2—71l/lel wherdly is the elastic scattering length.
The purpose ofthe time integralsin Eq. (8.A.12) isto project out from thergén
path integralPi?, defined in the position-time domain, an object depending in
an appropriate way on the energyccuring in the thermal weighting factor:
The [ d712 integral fixes the average energy of the upper and lower electron lines
(in diagrammatic language) to be- w/2 [whereT, is the length difference
between the forward and backward pieces of the contour]. [THe) integral
averages over all possible frequency differencegtween the upper and lower
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electron lines, as is necessary when vertex terms are present thigrtesnesgy
between them. And finally, th¢ d7, integral projects out th& »-dependence
of P41§ [whereT, is the difference between the midpoints of the forward and
backward pieces of the contour]. The only remaining time variahie s the
average of the lengths of the forward and backward pieces, anccéevied as
the “observationtime” as afunction ofwhi@l’jf,/’s(ng) will decay. ]52112,/’8(712)
will contain a contribution resulting from time-reversed paths that corredpo
to the full Cooperon in the position-time representat@p;o(m). The time
scale on which it decays is the desired decoherencertime

Now, to properly and dutifully perform the integrals in Eqg. (8.A.12) would
be an unfeasibly complicated task in the path integral approach. (Diagrammati-
cally, too, this is difficult, as will be discussed in [19].) To avoid these complica
tions, we shall use a rather rough but effective shortcut [used bypGdut not
explicitly discussed as such, since they chose not to discuss therneadianggeas
explicitly as in Egs. (8.0)]: to extract froth 112,’ an object depending only on the
time 12, we simply sefr, = 0, 715 = 0 andw = 0, instead of integrating them
out, assuming that this will not too strongly affect the resultingdependence
of ]54132’5(712). (The merits of this approximation will be discussed in more de-
tail elsewhere [19].) Thus, we st = t{ = 7/2andt = t8 = —7/2, which
implies that the observation timeig, = 7. The result is that we?,>"° (12)
by the objectf’;f,:’gﬁ(f) defined in Eq. (8.1). When doing so, we should choose

the energy variablés occuring in thetanh[h(e — @)/2T)-factor of Sy, to be

the same as that occuring in the thermal weighting fatoet;,(:c)]. In dia-
grammatic terms this approximation is rather natural: it corresponds to fixing
the average energy of the upper and lower electron lines to be
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