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We show in detail how Richardson’s exact solution of a discrete-state BCS ~DBCS! model can be recovered

as a special case of an algebraic Bethe-ansatz solution of the inhomogeneous XXX vertex model with twisted

boundary conditions: by implementing the twist using Sklyanin’s K-matrix construction and taking the quasi-

classical limit, one obtains a complete set of conserved quantities Hi from which the DBCS Hamiltonian can

be constructed as a second order polynomial. The eigenvalues and eigenstates of the Hi ~which reduce to the

Gaudin Hamiltonians in the limit of infinitely strong coupling! are exactly known in terms of a set of param-

eters determined by a set of on-shell Bethe ansatz equations, which reproduce Richardson’s equations for these

parameters. We thus clarify that the integrability of the DBCS model is a special case of the integrability of the

twisted inhomogeneous XXX vertex model. Furthermore, by considering the twisted inhomogeneous XXZ

model and/or choosing a generic polynomial of the Hi’s as Hamiltonian, more general exactly solvable models

can be constructed. To make the paper accessible to readers that are not Bethe-ansatz experts, the introductory

sections include a self-contained review of those of its feature which are needed here.

DOI: 10.1103/PhysRevB.66.134502 PACS number~s!: 74.25.2q, 74.20.2z, 75.10.Jm, 03.65.Fd

I. INTRODUCTION AND SUMMARY

In a series of pioneering experiments in the mid-1990’s,

Ralph, Black, and Tinkham observed a spectroscopic gap

indicative of pairing correlations in Al nanograins1 that were

so small that their electronic excitation spectra were discrete.
Their results inspired a growing number of theoretical stud-
ies of superconducting pairing correlations in nanograins
with a fixed number electrons ~see Refs. 2,3 for recent re-
views!. These works are based on a model, to be called
discrete-state BCS ~DBCS! model below, described by a re-
duced BCS Hamiltonian for a discrete set of doubly degen-
erate energy levels, with a pairing interaction that scatters
pairs of electrons from one level to the next. The DBCS
model was solved exactly by Richardson in a series of papers
starting in 1963:4 he explicitly constructed all eigenstates and
eigenenergies of the DBCS Hamiltonian in terms of a set of
energy parameters whose values are determined by ~numeri-
cally! solving a set of algebraic equations, to be called ‘‘Ri-
chardson’s equations.’’ Though his work had, for a long time,
been overlooked by the condensed matter community, it has
recently received increasing attention in the context of study-
ing pairing correlations in nanoscale Al grains, where the
existence of an exact solution has turned out to be as useful
as it had been unexpected.

The existence of an exact solution to a nontrivial model of
course immediately raises the question whether it is related
to any of the standard ways of exactly solving solvable mod-
els. The goal of this paper is to show that this is indeed the
case: Richardson’s solution of the DBCS model is a special

case of an algebraic Bethe-ansatz solution of the so-called

inhomogeneous XXX vertex model with twisted boundary

conditions.

This insight builds upon a series of recent observations
regarding exact properties of the DBCS model: In 1997,
Cambiaggio, Rivas, and Saraceno5 showed ~though unaware
of Richardson’s work! that the DBCS model was integrable,

and explicitly constructed all the constants of the motion @see

Eq. ~10! below#. In 2000, Amico, Falci, and Fazio6 realized

that the DBCS integrals of motion are in fact very similar to

the integrals of motion of the XXX Gaudin model @see Eq.

~11! below#, differing from the latter only by an additional Sz

term, and that Richardson’s equations are very similar to the
so-called Gaudin equations, differing from the latter only by
an additional constant term. Now, it has long been known
~see, e.g., Chap. 13.2 of Gaudin’s book7! that the Gaudin
model can be derived from the inhomogeneous XXX vertex
~IXXX! model with periodic boundary conditions, by taking
the so-called quasiclassical limit, and that, correspondingly,
the Gaudin equations can be derived by taking the quasiclas-
sical limit of Bethe-ansatz equations of the IXXX model.
Since Richardson’s ansatz satisfies the Gaudin equations
modified by the additional constant term, Amico, Falci, and
Fazio6 referred to Richardson’s ansatz as an ‘‘off-shell Bethe
ansatz,’’ i.e., an ansatz not satisfying the Bethe equations of
the original XXX model, but of a modified version thereof.
~The off-shell Bethe ansatz was originally introduced by
Babujian and Flume in a context quite different than finding
eigenstates and eigenvalues of integral models, namely, to
solve Knizhnik-Zamolodchikov differential equations arising
in conformal Wess-Zumino models.8!

In this paper, we address the following question: can one
construct a vertex model, integrable by the algebraic Bethe
ansatz ~ABA!, whose quasiclassical limit directly gives the
DBCS model, in other words, which is directly solved by a
normal ‘‘on-shell’’ Bethe ansatz? The answer is positive: we
show that the sought-after model is an IXXX model with
twisted ~instead of periodic! boundary conditions, which we
shall call the TIXXX model; its transfer matrix yields, in the
quasiclassical limit, a complete set of conserved quantities,
Hi, from which the DBCS Hamiltonian can be constructed as
a second order polynomial. Our emphasis on twisted bound-
ary conditions, in order to arrive at on-shell Bethe ansatz
equations, is the main difference between our work and that
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of Refs. 6,9. We implement the twist using the boundary

K-matrix construction of Sklyanin, which he introduced

while developing his method of separation of variables,10–12

an alternative ~and in some cases more powerful! way to the

ABA for constructing wave functions. In fact, Sklyanin him-

self mentioned in a side remark in Ref. 11 that the quasiclas-

sical limit of the IXXX model with twisted boundary condi-

tions ~using a diagonal K-matrix! produces a modified
version of the Gaudin model ~though he was not aware, at
the time, of the connection of the latter to the DBCS model!.

We hope that our work fully clarifies the origin of the
integrability of the DBCS model by explicitly constructing
the integrable TIXXX model from which the latter can be
derived. Moreover, by this construction we pave the way for
using the powerful algebraic Bethe-ansatz machinery to cal-
culate various quantities that have not yet been studied for
the DBCS model. For example, there has recently been great
progress in using the ABA to calculate matrix elements ~or
form factors! and correlation functions in vertex models ~see
Ref. 13, and Ref. 14 for a more recent development!. By
building upon our work, it should now be possible to fruit-
fully apply these results to the DBCS model, too.15

Our work also suggests ways for constructing integrable
generalizations of the DBCS model, by considering other
vertex models with twisted boundary conditions. In fact, one
such generalization, which is Bethe-ansatz solvable, has re-
cently been found independently by Amico, Di Lorenzo, and
Osterloh.9 They showed that by a slight generalization of the
integrals of motion of the DBCS model, another integrable
model is obtained. We shall show that the latter can be ob-
tained by taking the quasiclassical limit of the inhomoge-
neous XXZ vertex model with twisted boundary conditions
~TIXXZ model!, in complete ananology to the derivation of
the DBCS model from the TIXXX model.

Another interesting direction in which our work could be
pursued, is to consider boundary conditions with nondiago-

nal K-matrices. These generally lead to models which are
not solvable by the ABA. However, their eigenstates and
eigenvalues can, in many cases, nevertheless be found using
Sklyanin’s method of separation of variables.

The paper is intended to be accessible also to readers that
are not thoroughly familiar with the details of the algebraic
Bethe ansatz; those of its features which are needed here are
therefore introduced and reviewed in pedagogical detail. The
structure of the paper is as follows. In Sec. II we introduce
the DBCS and Gaudin models, recall how their integrals of
motion are constructed, and give the equations ~Richardson’s
or Gaudin’s! that have to be satisfied in order to obtain eigen-
states and eigenvectors. Sections III and IV contain a review
of well-known material, in a form that is useful for the novel
developments of subsequent sections: they give a self-
contained introduction to the ABA method, as applied to the
XXX and XXZ vertex models. Since both are special cases
of the so-called six-vertex model, we shall actually begin by
discussing the latter in full generality, before specializing
later on. In Sec. III we explain how the Yang-Baxter equa-
tions satisfied by the R-matrices of local Boltzmann weights
lead to the exchange relations for the components of the
Monodromy matrix T. Furthermore, we derive the fact that

the transfer matrices for different spectral parameters com-
mute, which is the underlying reason for the integrability of
the model. In Sec. IV we exploit the exchange relations of
the components of the Monodromy matrix to construct the
eigenstates and eigenvalues of the model. In Sec. V, we ex-
plain how the results of Secs. III and IV can be straightfor-
wardly generalized to the case of twisted boundary condi-
tions using Sklyanin’s K-matrix. Section VI contains our
new results: we show that by taking the quasiclassical limit
of the TIXXZ model, one recovers a generalized version of
the DBCS model. We also show that if one specializes these
results to the TIXXX model, one recovers the DBCS model.
Section VII contains some brief conclusions and an outlook
for future applications of our results.

II. THE DBCS AND GAUDIN MODELS

The DBCS model that is commonly used2,3 to describe
superconducting pairing correlations in nanoscale metallic
grains is defined as follows: one consideres a reduced BCS
Hamiltonian

H5 (
j ,s56

« jc js
† c js2g(

j j8

c j1
† c j2

† c j82c j81 , ~1!

for electrons in a set of pairs of time-reversed single-particle
states u j ,6& with energies « j , which are scattered pairwise
from level j8 to j, with interaction strength g. Richardson
managed to solve this model exactly, for an arbitrary set of
levels « j ~although his solution includes the case of multiply
degenerate levels, we shall here consider only the case where
« iÞ« j for iÞ j): Since any level occupied by only a single
electron does not participate in and remains ‘‘blocked’’ to the
pairscattering described by H, the labels of all such single-
occupied levels are good quantum numbers. The eigenstates
ua& and corresponding eigenenergies Ea of H thus have the
following general form:

ua&5)
iPB

c is i

† uCP& , Ea5EP1(
iPB

« i . ~2!

Here B is the set of singly-occupied, blocked levels, and
ucP& is an eigenstate, with eigenvalue EP and containing pre-
cisely P pairs of electrons, of a Hamiltonian HU which has
precisely the same form as the H of Eq. ~1!, except that now
the j-sums are restricted to run only over the set U of all
unblocked or nonsingly-occupied levels. It is now convenient
to introduce the pseudospin variables

S j
z
5

1
2 ~12c j1

† c j12c j2
† c j2!, S j

1
5c j2c j1 ,

S j
2

5c j1
† c j2

† , ~3!

which satisfy the standard SU~2! relations

@S i
1 ,S j

2#5d i j2S j
z , @S i

z ,S j
6#56d i jS j

6 , ~4!

and in terms of which HU takes the form

HU5(
j

U

2« j~1/22S j
z!2g(

i j
S i

2S j
1 . ~5!
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Our choice ~3! for the pseudospin variables differs from that
used in many other publications5,6,9 by the replacement

S i
1↔S i

2 , S i
z→2S i

z , ~6!

which preserves the SU~2! relations ~4!. With our choice, the
physical vacuum state u0&, containing no pairs, has the maxi-
mum possible Sz eigenvalue and hence is a ‘‘highest-weight’’
state. This is convenient for our present purpose, namely to
establish contact with the ABA, because in the Bethe-ansatz
literature it is standard practice to use highest-weight states
as reference states @see Eq. ~36! below#.

Now, Richardson showed that the sought-after P-pair
eigenstates ~unnormalized! and eigenenergies have the gen-
eral form16

uCP&5)
l51

P

S2~m l!u0& with S2~m l!5(
i

U
S i

2

2« i2m l

,

~7!

EP5(
l51

P

m l . ~8!

Here the P parameters m l (l51, . . . ,P) are a solution of a
set of P coupled algebraic equations, which we shall call the
‘‘Richardson equations,’’

1

g
2(

i

U
1

2« i2m l

1 (
l851

l8Þl

P
2

m l8
2m l

50 for l51, . . . ,P .

~9!

These are to be solved ~numerically, see Appendix B of Ref.
3! subject to the restrictions m l8

Þm l if l8Þl . A simple proof
of this result may be found in Appendix B of Ref. 3; its
strategy is to verify that (HU2EP)uCP&50 by simply com-

muting HU to the very right past all of the S l
2 operators in

Eq. ~7!.
Moreover, Cambiaggio, Rivas and Saraceno5 showed that

the constants of the motion of HU have the form17

Hi5S i
z
1g(

j51
jÞi

U
S i

zS j
z
1

1
2 ~S i

1S j
2

1S i
2S j

1!

« i2« j

. ~10!

The operators Hi , i51,2, . . . ,N commute with each other as
well as with the Hamiltonian ~5!. In the limit g→` , the
operators

Hi
Gaudin

5 lim
g→`

Hi /g5(
j51
jÞi

U
S i

zS j
z
1

1
2 ~S i

1S j
2

1S i
2S j

1!

« i2« j

~11!

coincide with the Hamiltonians of the Gaudin chain ~see
Chap. 13 of Ref. 7!. The common eigenstates of the Gaudin
Hamiltonians are given by the same Eqs. ~7!, but with the
parameters m l satisfying the so-called Gaudin equations,
which are simply the g→` limiting case18 of Richardsons
Eqs. ~9!. The corresponding eigenvalues of the Hamiltonians

Hi
Gaudin are given by

h i
Gaudin

52(
l51

P
1

2« i2m l

1

1

2 (
i851

i8Þi

U
2

« i2« i8

. ~12!

III. ALGEBRAIC BETHE ANSATZ

FOR THE INHOMOGENEOUS SIX-VERTEX MODEL

A. Definition of model

It is well known that the Gaudin model can be obtained
by taking the quasiclassical limit of the IXXX model.7 The
main result of this paper will be to show that a similar con-
struction can be used to obtain the DBCS model from the
TIXXX model, as well as generalized DBCS models from
the TIXXZ model. To set the scene for these developments,
the next two sections give a pedagogical review of the ABA
as applied to IXXX and IXXZ models. Since both are special
cases of the so-called 6-vertex model, we begin by discuss-
ing the latter in full generality. Bethe-ansatz experts may
want to skip directly to Sec. V.

The six-vertex model is a classical statistical mechanics
model on a two-dimensional regular quadratic lattice, whose
dynamical variables are arrows living along the horizontal
and vertical edges of the lattice, labeled by m51, . . . ,M and
i51, . . . ,N , respectively. At each vertex, only those six con-
figuration of arrows are ‘‘allowed,’’ i.e., have nonzero local
Boltzman weights ~BW’s!, for which the total flux into the
vertex is zero ~see Fig. 1!.

Thus, every allowed configurations has exactly two in-
coming and two out-coming arrows. Furthermore, we take
the local BW’s to be invariant with respect to the simulta-
neous reflection of all four arrows. This leaves only three
independent BW’s per vertex, to be denoted by ami , bmi ,
and cmi , where the subscripts give the location (m ,i) of the
vertex ~intersection of row m and column i). Since the BW’s
are allowed to depend on the location of the vertex, we are
considering an ‘‘inhomogeneous’’ model. As usual, the total
statistical weight of any given configuration is defined as the
product of the BW’s of all vertices, and the partition function
is defined as the sum of these statistical weights over all
qallowed configurations.

It is convenient to associate a two-dimensional vector
space C2 with each row, say Um for row m, and another with
each column, say V i for column i, in such a way that the
basis vectors

e1
(m)[S 1

0 D[→ , e2
(m)[S 0

1 D[← , ~13a!

e1
(i)[S 1

0 D[↑ , e2
(i)[S 0

1 D[↓ , ~13b!

FIG. 1. The six allowed configurations of arrows at a vertex of

the six-vertex model, with their corresponding Boltzmann weigths

a, b, and c.
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represent right- and left-pointing arrows along row m, or
upward and downward arrows along column i, respectively.
Then the local BW’s at vertex (m ,i) may be viewed as the
matrix elements of a linear operator Rmi that acts as follows
on the tensor product of the mth ‘‘horizontal’’ and ith ‘‘ver-
tical’’ space Um ^ V i :

Rmie l
(m)

^ ek
(i)

5~Rmi!
l̄
l
k̄

ke
l̄

(m)
^ e

k̄

(i)
, ~14a!

where the usual covention of summation over repeated indi-

ces l̄ , k̄P$1,2% is implied. ~As a rule, we shall put bars over
all repeated indices, and tilde’s or nothing over nonrepeated
upper or lower indices, respectively.! It follows that the ac-
tion of Rmi on the coordinates (wmi)

lk of a general vector

wmi[(wmi)
l̄ k̄e

l̄

(m)
^ e

k̄

(i)
PUm ^ V i takes the form

~Rmiwmi!
l̃ k̃

5~Rmi!
l̃
l̄
k̃

k̄~wmi!
l̄ k̄. ~14b!

The only nonzero matrix elements of the operator Rmi are

~Rmi!
1

1
1

15~Rmi!
2

2
2

25ami ,

~Rmi!
1

1
2

25~Rmi!
2

2
1

15bmi , ~15!

~Rmi!
1

2
2

15~Rmi!
2

1
1

25cmi .

A convenient matrix representation for Rmi is

~Rmi!
l̃
l
k̃

k5S ~ami!
k̃

k ~bmi!
k̃

k

~gmi!
k̃

k ~dmi!
k̃

k

D l̃

l

, ~16a!

where ami , bmi , bmi , gmi are operators acting on the two-
dimensional vertical space V i :

ami5S ami 0

0 bmi
D , bmi5S 0 0

cmi 0
D ,

gmi5S 0 cmi

0 0
D , dmi5S bmi 0

0 ami
D . ~16b!

Even more explicitly, Rmi can be expressed as follows in
terms of the unit operator I and the Pauli s-matrices sz,
s6

5(sx
6isy)/2,

Rmi5

ami1bmi

2
~Im ^ Ii!1

ami2bmi

2
~sm

z
^ si

z!

1cmi~sm
1

^ si
2

1sm
2

^ si
1!, ~17!

where the lower indices of the operators indicate the space
(Um or V i) on which they act.

B. Monodromy matrix

One of the most important objects in the ABA method is
the Monodromy matrix Tm . It is defined to be the operator

Tm5RmNRmN21•••Rm1 , ~18a!

which acts on the space Um ^ V1••• ^ VN , with each factor
Rmi acting nontrivially only on the ‘‘horizontal’’ space Um

and the ‘‘vertical’’ space V i . To illustrate this action explic-
itly, we note that the matrix elements of Tm are constructed
as follows from those of Rmi :

~Tm! l ,
l̃ ,

kN . . . k1

k̃N . . . k̃1

5~RmN!
l̄ N21

l̃

kN

k̃N ~RmN21!
l̄ N22

l̄ N21

kN21

k̃N21 . . . ~Rm1!
l

l̄ 1
k1

k̃1 .

~18b!

This equation has a simple physical interpretation: each such
matrix element of Tm gives the total Boltzmann weight of the
mth row, depicted in Fig. 2, for a fixed configuration of ex-
ternal arrows @specified by the indices of Tm on the left-hand
side of Eq. ~18b!#, obtained by summing over all allowed

configurations of arrows on internal horizontal edges @the l̄ i

sums, for i52, . . . ,N , on the right-hand side of Eq. ~18b!#.
Likewise, using this one row construction as building block,
the partition function of an M-row lattice can be expressed
via the matrix elements of a suitable product of the M Mono-
dromy matrices, as will be seen below.

Because of the different roles played by the horizontal
space Um ~usually reffered as the auxiliary space! and the
tensor product of remaining vertical spaces V1•••VN ~the so
called quantum space!, it is convenient to arrange the matrix
elements of Tm that correspond to the horizontal space Um ,

i.e., (Tm) l
l̃ in the notation of Eq. ~18b!, into a 232 matrix

Tm[S Am Bm

Cm Dm
D . ~19!

Its entries A, B, C, and D are, of course, operators acting on
the quantum space, which implicitly carry the k indices that
are displayed in Eq. ~18b! ~for brevity, we suppressed these
above!. Each of these four matrix elements corresponds to
one of four possible kinds of rows in Fig. 2, depending on
how the arrows on the first and last ~i.e., external! horizontal
edges are fixed:

A:~→ ,→ !, B:~→ ,← !, C:~← ,→ !, D:~← ,← !.
~20!

Note that in this matrix representation, the product of Rmi-
matrices on the right-hand side of Eq. ~18a! may be viewed
as conventional multiplication of 232 matrices @of the form
~16a!#, whose entries are, however, operators on the quantum
space ~and hence carry suppressed k indices!.

FIG. 2. Construction of the Monodromy matrix: the matrix ele-

ment (Tm) l̃ ,
l , kN•••k1

k̃N••• k̃1 is equal to the total Boltzmann weight of the

mth row, for a fixed configuration of external arrows ~specified by

the indices of Tm), obtained by summing over all allowed configu-

rations of arrows on internal lines ~whose indices carry bars here!.

J. von DELFT AND R. POGHOSSIAN PHYSICAL REVIEW B 66, 134502 ~2002!

134502-4



C. Transfer matrix

In order to investigate our model in the case of periodic
boundary conditions in the horizontal direction, it is natural
to consider the operator Tm ~called transfer matrix!, defined
as the trace of Tm in the horizontal space Um :

Tm[Trm$Tm%[ (
l51,2

~Tm! l
l
5Am1Dm . ~21!

Its matrix elements (Tm)
kN•••k1

k̃N••• k̃1 give the total Boltzmann

weight of the mth row depicted in Fig. 2 for a fixed configu-
ration of arrows on the vertical edges @specified by the indi-
ces of Tm], obtained by summing over all allowed configu-
rations of arrows on horizontal edges, with the boundary
condition that the arrows of the first and last horizontal edges
are equal.

It follows that the full partition function for a lattice of M

rows and N columns can readily be constructed by a suitable
product of M transfer matrices: for the case of double peri-
odic boundary conditions, it is equal to

ZM ,N[~TM !
k̄

N
M21

••• k̄
1
M21

k̄
N
M

••• k̄1
M

~TM21!
k̄

N
M22

••• k̄
1
M22

k̄
N
M21

. . . k̄1
M21

•••

3~T1!
k̄

N
M

••• k̄
1
M

k̄
N
1

••• k̄1
1

~22!

[Tr$TMTM21•••T1%, ~23!

i.e., the trace is over the entire quantum space V1 ^ •••VN .
The distinguishing feature of integrable models is that the

transfer matrices for different rows commute, TmTm8
5Tm8

Tm . In this case, all transfer matrices have common

eigenstates, with eigenvalues Lm
(a) , say, so that the partition

function takes the form

ZM ,N5(
a

)
m51

M

Lm
(a) . ~24!

Thus, the calculation of the partition function reduces to the
problem of finding the eigenvalues of the transfer matrices.

D. Yang-Baxter relations

It turns out ~and will be shown below! that the transfer
matrices commute if the local BW’s ami , bmi , cmi are pa-
rametrized as follows:

ami51, bmi5b~lm ,j i!, cmi5c~lm ,j i!, ~25a!

b~l ,j !5

f~l2j !

f~l2j12h !
, c~l ,j !5

f~2h !

f~l2j12h !
,

~25b!

where form of the function f(x) can be either f(x)5x or
f(x)5sinh x. The parameter lm ~called ‘‘spectral param-
eter’’! is associated with the mth horizontal line, and j i ~the
inhomogeneity parameter! with the ith vertical line. Note
that the dependence of the local BW’s ami , bmi , cmi on their
indices thus enters only via their spectral parameters, which

is why we could introduce functions b(l ,j) and c(l ,j) that
do not carry the indices (m ,i) any longer. Note also that the
ratio c/b is antisymmetric under an interchange of its argu-
ments

c~l ,j !

b~l ,j !
52

c~j ,l !

b~j ,l !
, ~26!

a property that will be useful later.
Usually the rational case f(x)5x is referred to as the

XXX model and the trigonometric case f(x)5sinh x as the
XXZ model, since the Hamiltonians of the XXX and XXZ
Heisenberg magnetic chains can be derived from the corre-
sponding ~homogeneous! transfer matrices, by taking a loga-
rithmic derivative with respect to the spectral parameter at
some specific point ~see, e.g., Chap. 10.14 of Ref. 19!.

For the choice of BW’s of Eqs. ~25!, the Rmi-matrices
have the following very important property, which ultimately
leads to the solution of the problem: they satisfies the Yang-
Baxter ~YB! equation

R̃mm8
~lm ,lm8

!Rmi~lm ,j i!Rm8i~lm8
,j i!

5Rm8i~lm8
,j i!Rmi~lm ,j i!R̃mm8

~lm ,lm8
!, ~27a!

where the operator products on both sides act on the space
Um ^ Um8

^ V i , and the arguments in brackets indicate ex-
plicitly on which parameters the corresponding operators de-
pend. As before, the Rmi-operators act on one horizontal and
one vertical space, Um ^ V i ; their nonzero matrix elements
are given in Eq. ~15!, with the parameters ami , bmi , and cmi

as defined in Eq. ~25a!, with arguments lm and j i . In con-

trast, the operator R̃mm8
acts on two horizontal spaces, Um

and Um8
; apart from this replacement of vertical space V i by

the horizontal space Um8
, however, the structure of R̃mm8

is
exactly the same as that of Rmi : the nonzero matrix elements

of R̃mm8
are likewise given by Eq. ~15!, where now the pa-

rameters amm8
, bmm8

and cmm8
have arguments lm and lm8

~i.e., two l’s instead of l and j):

amm8
51, bmm8

5b~lm ,lm8
!, cmm8

5c~lm ,lm8
!.

To be explicit, the Yang-Baxter equation implies the follow-
ing relations between matrix elements of the transfer matri-
ces:

~R̃mm8
!

l̄ l̄8

l̃ l̃8
~Rmi! l k̄

l̄ k̃
~Rm8i! l8k

l̄ 8 k̄

5~Rm8i! l̄ 8 k̄

l̃ 8 k̃
~Rmi! l̄ k

l̃ k̄
~R̃mm8

!
l l8

l̄ l̄ 8 . ~27b!

~As usual, we used bars for repeated indices, which are
summed over.! Graphically, this equation can be represented
as the equality of the BW’s of the configurations depicted in
Fig. 3~b!, where the left and right diagrams have the same

configuration of arrows on all external edges, and sums over
all possible configurations of internal indices are implied.
The verification of the YB equation ~27a! is straightforward
~though rather tedious! and reduces to some simple rational
or trigonometric identities. @Actually, the solvability of these
Yang-Baxter equations dictated the choice of parametrization
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of a, b, and c made in Eq. ~25b!.# As an illustration, the
graph in Fig. 3~b! corresponds to the following explicit real-
ization of Eq. ~27b!:

~R̃mm8
! 21

12 ~Rmi! 22
22 ~Rm8i! 12

12

1~R̃mm8
! 12

12 ~Rmi! 21
12 ~Rm8i! 12

21

5~Rm8i! 22
22 ~Rmi! 12

12 ~R̃mm8
! 21

12 ~28a!

or, using Eqs. ~15!,

cmm8
amibm8i1bmm8

cmicm8i5am8ibmicmm8
, ~28b!

which can be verified to hold if ami , bmi , and cmi have the
form specified in Eqs. ~25!.

Now consider two Monodromy matrices Tm and Tm8
with

identical sets of inhomogeneity parameters j1 , . . . ,jN ,

T~lm![Tm~lm ;j1 , . . . ,jN!,

T~lm8
![Tm8

~lm8
;j1 , . . . ,jN!, ~29!

so that it suffices to display only the functional dependence
on the ~arbitrary! spectral parameters lm or lm8

. For this
case, we shall write the components of T(lm) as A(lm),
B(lm), C(lm), and D(lm), and the transfer matrix as

T(lm), while using R̃mm8
as shorthand for R̃mm8

(lm ,lm8
).

A direct consequence of the YB equation is that two such
Monodromy matrices satisfy the following exchange rela-
tions:

R̃mm8
T~lm!T~lm8

!5T~lm8
!T~lm!R̃mm8

~30a!

or, in terms of matrix elements,

~R̃mm8
!

l̄ l̄8

l̃ l̃8
T

l , k̄N••• k̄1

l̄ , k̃N••• k̃1
~lm!T

l8,kN•••k1,

l̄ 8, k̄N••• k̄1 ~lm8
!

5T
l̄ 8, k̄N••• k̄1

l̃ 8, k̃N••• k̃1
~lm8

!T
l̄ ,kN . . . k1

l̃ , k̄N . . . k̄1
~lm!~R̃mm8

!
l l8

l̄ l̄8 .

~30b!

Figure 4 is a graphical representation of this relation. To
prove it, one successively ‘‘pulls’’ the crossing of the two
horizontal lines across from the right-most edge of the quan-
tum space to the left-most edge, using the graphical repre-
sentation Fig. 3 of the YB equation ~27a!. Rewriting Eq.
~30a! in the form

R̃mm8
T~lm!T~lm8

!R̃
mm8

21
5T~lm8

!T~lm!, ~31!

taking traces over the spaces Um , Um8
and using the cyclic

property of the trace operation, one immediately concludes
that the corresponding transfer matrices commute:

T~lm!T~lm8
!5T~lm8

!T~lm!. ~32!

It is the existence of a one-parameter family of commuting
transfer matices that makes the exact calculation of their ei-
genvalues and construction of their common eigenstates pos-
sible.

IV. EIGENSTATES AND EIGENVALUES

OF THE TRANSFER MATRIX

Equation ~30a! represents in a compact form 16 commu-
tation relations among the matrix entries A(lm), B(lm),
C(lm), and D(lm) of the Monodromy matrix T(lm) @see
Eq. ~19!#. Below we wright down three of them, which are
essential for solving our eigenvalue eigenstate problem ~the
full set of relations can be found, e.g., in Chap VII of Ref.
13!:

@B~lm!,B~lm8
!#50, ~33a!

A~lm!B~lm8
!5

1

b~lm8
,lm!

B~lm8
!A~lm!

1

c~lm ,lm8
!

b~lm ,lm8
!

B~lm!A~lm8
!, ~33b!

D~lm!B~lm8
!5

1

b~lm ,lm8
!

B~lm8
!D~lm!

1

c~lm8
,lm!

b~lm8
,lm!

B~lm!D~lm8
!. ~33c!

These three equations correspond to the graphical equations
of Figs. 4~b!, 4~c!, and 4~d! ~in that order!; for example, Fig.
4~d! represents the following specific realization of Eq. ~30b!
~whose k-indices we suppress here!:

FIG. 3. Graphical depiction of the Yang-Baxter equations. ~a!

Schematic depiction of the action of (R̃mm8
)

l l8

l̃ l̃8 , which inter-

changes the order of the rows m8 and m. ~b! General graph for the

Yang-Baxter equation ~27b!. ~c! Specific graph for a particular con-

figuration of external arrows, representing the specific Yang-Baxter

equation ~28!. Summing over all possible configurations of internal

arrows consistent with the given choice of external arrows turns out

to give two graphs on the left-hand side, but only one on the right-

hand side.
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~R̃mm8
! 2

2
1

1 T 2
2 ~lm!T 2

1 ~lm8
!

1~R̃mm8
! 1

2
2

1 T 2
1~lm!T 2

2 ~lm8
! ~34!

5T 2
1 ~lm8

!T 2
2 ~lm!~R̃mm8

! 22
22 . ~35!

Using Eqs. ~15! and the antisymmetry property ~26!, this
readily reduces to Eq. ~33c!.

Now we are ready to construct some eigenstates of the
model. As reference state we use the following so-called
vacuum state or highest-weight state,

u0&[e1
(1)

^ ••• ^ e1
(N)

PV1 ^ ••• ^ VN , ~36!

which can be visualized as a row of vertical edges, each of
which carries an upward-pointing arrow. It is easy to verify
that

C~lm!u0&50, ~37a!

A~lm!u0&5u0& , ~37b!

D~lm!u0&5)
i51

N

b~lm ,j i!u0& . ~37c!

To check, e.g., Eq. ~37c!, recall that the operator D has the
graphical representation shown in Fig. 2, with left-pointing
arrows put on the first and last horizontal edges. The action
on u0& implies arranging upward-pointing arrows on all the
vertical edges above the horizontal line, but then the only
allowed arrangement of arrows on the edges below the hori-
zontal line is again a sequence of exclusively upward-
pointing arrows. By Eq. ~18b!, this implies that we must
have N successive b-type vertices, as specified in Eq. ~37c!.

To obtain more general states, one can act on the refer-
ence state u0& by an arbitrary number P ~with 1<P<M ) of
operators B:

um1 , . . . ,mP&[B~m1! . . . B~mP!u0&. ~38!

Note that the parameters m l , l51, . . . ,P , in the arguments
of the B’s are arbitrary now, and unrelated to the spectral
parameters introduced earlier, for which lm is associated
with row m. We shall now show that when these m l param-
eters are solutions of a particular system of equations @the
famous Bethe-ansatz equations, see Eq. ~45! below#, the vec-
tor ~38! becomes an eigenstate of the transfer matrix T(l)
~we shall henceforth usually drop the index m on lm , since
only the functional dependence is important!. To this end, let

FIG. 4. Illustration of the exchange relations ~30a! for the Monodromy matrix. ~a! The general relation ~30a!. ~b!, ~c!, ~d!. Three specific

choices of external arrows, leading to the three Eqs. ~33a!, ~33b!, and ~33c!, respectively.

ALGEBRAIC BETHE ANSATZ FOR A DISCRETE-STATE . . . PHYSICAL REVIEW B 66, 134502 ~2002!

134502-7



us analyze in detail the action by the operator D(l) on the
Bethe vector ~38! @subsequently, the action of A(l), which is
analogous, will be outlined somewhat more briefly#. Our
strategy is simple: using the exchange relations ~33c!, we
move the operator D to the right past all B’s until it appears
next to the vacuum state u0&, on which it acts according to
Eq. ~37c!. The result can be represented as

D~l !um1 , . . . ,mP&5)
l51

P
1

b~l ,m l!
)
i51

N

b~l ,j i!um1 , . . . ,mP&

1(
l51

P

f l
Dum1 , . . . ,m l21 ,l ,m l11 , . . . ,mP& , ~39a!

f l
D

5

c~m l ,l !

b~m l ,l ! )
l851

l8Þl

P
1

b~m l ,m l8
!
)
i51

N

b~m l ,j i!. ~39b!

The first ~so-called ‘‘wanted’’! term on the right-hand side
~RHS! of Eq. ~39a! arises from the case for which one picks
up, at each of the series of commutations, the first term of the
exchange rule ~33c!, which in our case is equal to

1

b~l ,m l!
B~m l!D~l !. ~40!

Below we will refer to this term in exchange relation as a
‘‘regular’’ term. All other terms ~the so called unwanted
terms!, which have contributions from the second term of
~33c!, are combined in the second line of Eq. ~39a!. The form

of the coefficient f l
D occuring in this term is given in Eq.

~39b! and can be derived as follows: the left-hand side ~LHS!
of the Eq. ~39a! is symmetric with respect to the permuta-
tions of the parameters m1 , . . . ,mP , due to the commutativ-
ity ~33a! of B’s. Since the first term on the RHS of Eq. ~39a!
is symmetric as well, the second should be too. This means

that if one succeedes to determine a single coefficient f l
D for

some fixed l, then all other f ’s can be straightforwardly
found using the symmetry. Let us consider the case l51. It
is not difficult to see that the only possibility to obtain a term
that is proportional to ul ,m2 , . . . ,mP& and does not contain
the operator B(m1), is to choose the ‘‘wrong’’ term of ~33c!,

c~m1 ,l !

b~m1 ,l !
B~l !D~m1!, ~41!

at the very first step when commuting D(l) with B(m1), and

then everywhere else to choose ‘‘regular’’ ones. Thus, for f 1
D

we obtain

f 1
D

5

c~m1 ,l !

b~m1 ,l !)l52

P
1

b~m1 ,m l!
)
i51

N

b~m1 ,j i!. ~42!

The abovementioned symmetry under the permutations of

m l’s then immediately implies that in general f l
D must have

the form given in Eq. ~39b!.
A similar consideration of the action by the operator A on

the Bethe vector ~38! gives

A~l !um1 , . . . ,mP&5)
l51

P
1

b~m l ,l !
um1 , . . . ,mP&

1(
l51

p

f l
Aum1 , . . . ,m l21 ,l ,m l11 , . . . ,mP& ,

~43a!

f l
A
5

c~l ,m l!

b~l ,m l!
)

l851

l8Þl

P
1

b~m l8
,m l!

. ~43b!

Combining Eqs. ~39! and ~43!, we see that the state ~38! is an
eigenstate of the transfer matrix T(l)5A(l)1D(l)

T~l !um1 , . . . ,mP&5t~l;m1 , . . . ,mP!um1 , . . . ,mP&
~44a!

with the eigenvalue

t~l;m1 , . . . ,mP!5)
l51

P
1

b~m l ,l !
1)

l51

P
1

b~l ,m l!
)
i51

N

b~l ,j i!,

~44b!

provided that f l
A
1 f l

D
50 for every l51,2, . . . ,P . Using the

antisymmetry property of the ratio c/b , Eq. ~26!, it is easy to
see that this condition is satisfied provided that the P param-
eters m1 , . . . ,mP satisfy the following system of P equa-
tions:

)
l851

l8Þl

P
b~m l ,m l8

!

b~m l8
,m l!

5)
i51

N

b~m l ,j i!, ~45!

which are known as the Bethe equations. Every solution of
the system of Bethe equations defines an eigenstate and cor-
responding eigenvalue of the transfermatrix T(l) via Eqs.
~38! and ~44b!.

V. SKLYANIN’S K-MATRIX

In this section, we shall generalize, following
Sklyanin,10–12 the formalism described above to the case
when the boundary conditions in the horizontal direction is
not strictly periodic: instead, the first and N1 first horizontal
bonds are to be identified only up to a ‘‘twist,’’ implemented
using a ~fixed! linear transformation. We will show later on
that the DBCS model ~and also some of its possible gener-
alizations! is some special limiting case of the inhomogeneus
XXX~XXZ! model with such a twisted boundary condition.
Consider a diagonal 232 matrix Km , first introduced by
Sklyanin,10,11 acting on the horizontal space Um :

Km5S ~Km!11 0

0 ~Km!22
D . ~46!

It is easy to check that the following relation holds20 ~illus-
trated in Fig. 5!:
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@R̃mm8
,KmKm8

#50, ~47!

where, in accord with our earlier conventions, the subscripts
(m ,m8) specify the horizontal spaces on which the operators
act non trivially. Let us define a modified monodromy matrix
as

T̃m[T̃~lm![KmT~lm!, ~48!

or, in the 232 block form of Eq. ~19!,

T̃m[S Ãm B̃m

C̃m D̃m

D 5S ~Km!11 0

0 ~Km!22
D S Am Bm

Cm Dm
D .

~49!

Equation ~47! ensures that the new monodromy matrix T̃

obeys exactly the same exchange relation ~30a! as T, so that
in particular Eqs. ~32! and ~33! remain valid also after the

substitution T→T̃, A→Ã , B→B̃ , C→C̃ , D→D̃ . Further-
more, the analogs of Eqs. ~37! take the form

C̃~l !u0&50,

Ã~l !u0&5K11u0&,

D̃~l !u0&5K22)
i51

N

b~l ,j i!u0& . ~50!

It follows that the Bethe vector @see Eq. ~38!#

um1 , . . . ,mP&K[B̃~m1!•••B̃~mP!u0& ~51!

is an eigenstate of T̃(l),

T̃~l !um1 , . . . ,mP&K5 t̃ ~l;m1 , . . . ,mP!um1 , . . . ,mP&K ,
~52!

with eigenvalue

t̃ ~l;m1 , . . . ,mP!5K11)
l51

P
1

b~m l ,l !

1K22)
l51

P
1

b~l ,m l!
)
i51

N

b~l ,j i!,

~53!

provided that the parameters m j satisfy the following Bethe
equations, for l51, . . . ,P:

K11 )
l851

l8Þl

P
b~m l ,m l8

!

b~m l8
,m l!

5K22)
i51

N

b~m l ,j i!. ~54!

VI. THE ‘‘QUASICLASSICAL’’ LIMIT

In this section we show how the DBCS pairing model, or
a generalisation thereof, can be recovered21 by taking the
so-called ‘‘quasiclassical’’ limit (h→0) of the TIXXX or
TIXXZ model, respectively. We shall present explicitly cal-
culations for the TIXXZ case, i.e., for f(x)5sinh(x); to re-
cover the corresponding results for the TIXXX case, one
simply has to replace all hyperbolic functions by the corre-
sponding rational ones.

A. Generator for conserved operators

Before taking the limit h→0, it is convenient to write the
inhomogeneity parameters as

j i52« i1h , ~55!

where the new parameters « i’s are taken to be independent of
h , and rescale the Rmi operators by a scalar factor, as fol-
lows:

Rmi→
2Rmi ,

b~lm ,j i!11
5

sinh~lm22« i1h !

sinh~lm22« i!cosh~h !
Rmi .

~56!

These transformations are convenient because, first, then the
leading term in Rmi is simply a direct product of unit matri-
ces @see Eq. ~57! below#; and second, as we will see later,
then many equations transform simply under h→2h ~being
either symmetric or antisymmetric!, which considerably sim-
plifies all expansions in powers of h . When written in terms
of a direct product of 232 Pauli matrices as in Eq. ~17!, the
rescaled Rmi of @Eq. ~56!# takes the form

Rmi5Im ^ Ii1

tanh h

tanh~lm22« i!
sm

z
^ si

z

1

2 sinh h

sinh~lm22« i!
~sm

1
^ si

2
1sm

2
^ si

1!. ~57!

Now choose the following form for the K matrix:

K5I1

h

g
sz, ~58!

and expand the transfer matrix in powers of the parameter h ,
using Eqs. ~57! and ~58!. This readily yields

T̃~lm![Trm$KmRmN•••Rm1%52I1

4

g
h2P~lm!1O~h3!,

~59!

where

FIG. 5. ~a! Sklyanin’s K-matrix and ~b! a graphical depiction of

Eq. ~47!.
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P~l !5

1

2(i51

N
si

z

tanh~l22« i!

1g(
i , j

i, j

N S si
zsj

z

2 tanh~l22« i!tanh~l22« j!

1

si
1sj

2
1si

2sj
1

sinh~l22« i!sinh~l22« j!
D , ~60!

and to the commutativity ~32! of transfer matrices for differ-
ent spectral parameters guarantees that

@P~l !,P~l8!#50. ~61!

P(l) can be viewed as the generating operator for all pos-
sible conserved operators of the model.

A convenient way of obtaining a complete set of commut-
ing conserved operators, is to take the residues of P(l) at the
points l52« i for i51•••N ,

Hi5Res@P~l !;l→2« i#5 R
Ci

dl

2pi
P~l !, ~62!

where Ci is a small contour in the complex l-plane, encir-
cling the point 2« i . Explicitly evaluating the residues for the
present model, one obtains

Hi5

si
z

2
1g(

j51
jÞi

N S si
zsj

z

2 tanh~2« i22« j!
1

si
1sj

2
1si

2sj
1

sinh~2« i22« j!
D .

~63!

Equation ~61! immediately implies that all of these operators
commute: @Hi ,Hj#50. Furthermore, it is not difficult to
show that the set of all Hi is complete, in the sense that P(l)
can be expressed purely in terms of these operators. Indeed,
P(l) is a rational ~matrix-valued! function of the variable z

[exp(2l), which is regular at z→` and has simple poles at
z→exp(4«i); it is thus completely determined in terms of the
corresponding residues, which are equal to 2 exp(4«i)Hi , so
that we have

P~l !5P~` !1(
i51

N
2e4« iHi

e2l
2e4« i

. ~64!

The term P(`) itself also can be expressed via Hi :

P~` !5gS (
i51

N

HiD 2

1(
i51

N

Hi2

Ng

4
, ~65!

where we have used the fact that

(
i51

N

Hi5

1

2 (
i51

N

si
z . ~66!

The commuting operators Hi are in fact just the so-called
generalized Gaudin Hamiltonians. Moroever, in the limit g

→` , in which K5I so that one recovers periodic boundary
conditions, the Hi /g reduce to the standard Gaudin Hamil-

tonians Hi
Gaudin of Eq. ~11!.

B. Eigenvectors

To obtain the quasiclassical limit of the Bethe eigenvec-
tors um1 , . . . ,mP&K of Eq. ~51!, we have to investigate the

h→0 limit of the operators B̃ which enter in its definition of

Eq. ~51!. Now, recall that the operator B̃m5B̃(lm) is the
(1,2) component ~in auxiliary space Um) of the monodromy

matrix T̃m5KmRmN•••Rm1, which has the following expan-
sion @using Eqs. ~57! and ~58!#:

T̃~lm!5I1

h

g
sm

z
1(

i51

N F h

tanh~lm22« i!
sm

z si
z

1

2h

sinh~lm22« i!
~sm

1si
2

1sm
2si

1!G1O~h2!.

~67!

In this equation, the only terms having non-zero ~1,2! com-

ponents and hence contributing to B̃(lm) are those propor-

tional to sm
1 . Thus we have

B̃~l !52hS2~l !1O~h2!, ~68!

where

S2~l !5(
i51

N
si

2

sinh~l22« i!
. ~69!

We see that the quasiclassical ~unnormalized! Bethe vector
of Eq. ~51! takes the form

um1•••mP&K5S2~m1!•••S2~mP!u0&, ~70!

where, as before, the reference state u0& is defined by
Eq. ~36!.

C. Eigenvalues

The eigenvalues h i of the conserved operators Hi can be
found from the eigenvalue p(l) of their generator P(l).
Since (4/g)P(l) is the order-h2 coefficient of the transfer

matrix T̃(l) @Eq. ~59!#, its eigenvalue (4/g)p(l) is given by
the order-h2 coefficient of the corresponding eigenvalue

t̃ (l), which can be found by multiplying Eq. ~53! by the
factor

)
i51

N
sinh~l22« i1h !

sinh~l22« i!cosh~h !
~71!

@see Eq. ~56!# and setting j i52« i1h @see Eq. ~55!#:
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t̃ ~l !5F S 11

h

g
D)

i51

N
sinh~l22« i1h !

sinh~l22« i!cosh~h !

3)
l51

P
sinh~l2m l22h !

sinh~l2m l!

1S 12

h

g
D)

i51

N
sinh~l22« i2h !

sinh~l22« i!cosh~h !

3)
l51

P
sinh~l2m l12h !

sinh~l2m l!
G . ~72!

Expanding this expression in h , the coefficient of h2, mul-
tiplied by g/4, is found to be

p~l !5Pg1

1

2 (
i51

N
1

tanh~l22« i!
2(

l51

P
1

tanh~l2m l!

1

1

2 (
i ,i8

i,i8

N
g

tanh~l22« i!tanh~l22« i8
!

1 (
l ,l8

l,l8

P
2g

tanh~l2m l!tanh~l2m l8
!

2(
i

N

(
l51

P
g

tanh~l22« i!tanh~l2m l!
. ~73!

The eigenvalues of the generalized Gaudin Hamiltonians Hi ,
say h i , can be obtained by taking the residues at the points
l52« i :

h i5

1

2
2(

l51

P
g

tanh~2« i2m l!
1

1

2 (
i851

i8Þi

N
g

tanh~2« i22« i8
!

.

~74!

Finally, since all the Hi commute, we can immediately write
down the eigenvalue of any function of these operators. In
particular, the general Hamiltonian

H5P~H1 , . . . ,HN!, ~75!

where P is some arbitrary polinomial of its arguments, has
eigenvalues P(h1 , . . . hN). For example, the general class of
models recently discussed by Amico, Di Lorenzo, and
Osterloh9 in the context of superconductivity in small grains,
is obtained by considering certain second order polynomials
~i.e., quadratic combinations of Hi’s!.

D. Bethe equations

The quasiclassical Bethe state um1 , . . . ,mP&K is an eigen-
state of the generator P(l), and consequently also of each of
the generalized Gaudin Hamiltonians Hi , only if the param-
eters m l satisfy the limit h→0 of the Bethe equations ~54!.

The latter are of course not affected by the rescaling trans-
formation ~56!, and take the following form upon inserting
j i52« i1h of Eq. ~55!:

S 11

h

g
D )

l851

l8Þl

P
sinh~m l8

2m l12h !

sinh~m l8
2m l22h !

5S 12

h

g
D)

i51

N
sinh~m l22« i2h !

sinh~m l22« i1h !
.

In the ‘‘quasiclassical’’ limit h→0 we obtain the following
set of equations, for l51, . . . ,P , which may be viewed as
generalized Gaudin equations:

1

g
2(

i51

N
1

tanh~2« i2m l!
1 (

l851

l8Þl

P
2

tanh~m l8
2m l!

50. ~76!

We would like to emphasize that these are the on-shell Bethe
equations of quasiclassical limit of the TIXXZ model. In
contrast, in Refs. 6 and 9, who did not consider twisted
boundary conditions as we do here, these equations are off-
shell Bethe-ansatz equations.

Of course, Eqs. ~76! can be derived, if desired, without
reference to the ABA, by pursuing the following strategy
~described in detail in Appendix B of Ref. 3!: in order to
show that the state um1•••mP&K of Eq. ~70! is an eigenstate
of any Hi , one would commute Hi past all the operators
S2(m l) in Eq. ~70! @whose form ~69! is reminiscent of the
operators Bm defined Ref. 3 if we identify si

2 with b i
†]; this

would generate ‘‘unwanted’’ terms that only vanish if Eqs.
~76! are satisfied.

E. Specialization to Richardson’s equations

It is straightforward to recover the DBCS model and Ri-
chardson’s solution thereof, as summarized in Sec. II, by
considering the case f(x)5x appropriate for the XXX
model ~instead of the XXZ case f5sinh x), and replacing
everywhere

tanh x→x , sinh x→x . ~77!

First, we note that the generalized Gaudin equations ~76!
then reduce to Richardson’s equations ~9!. Furthermore, the
generalized Gaudin Hamiltonians Hi of Eq. ~63! reduce to
the form given in Eq. ~10! for the conserved operators of the
DBCS model. This fact was noted by Sklyanin himself in a
side remark in Ref. 11, and first derived by him already in
1989 in Ref. 12. However, he was at the time unaware of the
fact that the resulting Hi were useful in the context of the
DBCS model, and in particular, that they be used to construct
the Hamiltonian HU of Eq. ~5! of the DBCS model. It is
straightforward to check that this can be done through the
following construction:

HU~Hi!5(
i51

N

@~g22« i!Hi1~« i23g/4!#1gS (
i51

N

HiD 2

.

~78!

To calculate its eigenvalues EP5HU(h i) explicitly, the fol-
lowing identities @derived by repeated use of Eqs. ~74! and
~76!# are useful:
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(
i51

N

h i5

N

2
2(

l51

P

(
i51

N
g

2« i2m l

5

N

2
2(

l51

P S 11 (
l851

l8Þl

P
2g

m l8
2m lD 5

N

2
2P , ~79a!

(
i51

N

2« ih i5(
i51

N

« i1 (
i ,i8

iÞi8

N
g« i

2~« i2« i8
!

2(
i51

N

(
l51

P
2g« i

2« i2m l

~79b!

5(
i51

N

« i1gN~N21 !/4

2F(
l51

P

m l1gPN2gP~P21 !G , ~79c!

where the last term of Eq. ~79c! was obtained from the last
term of Eq. ~79b! by rewriting the latter as follows:

(
i51

N

(
l51

P
g~2« i2m l1m l!

2« i2m l

5gPN1(
l51

P

m lS 11 (
l851

l8Þl

P
2g

m l8
2m lD . ~79d!

Using Eqs. ~79a! and ~79c!, it is straightforward to check that

EP reduces to the simple form EP5( l51
P m l of Eq. ~8!.

VII. CONCLUSIONS

The TIXXZ results of the previous section for the con-
served operators Hi , their eigenvalues h i and eigenvectors
um1 , . . . ,mP&K , and the corresponding consistency condi-
tion ~76!, have been found independently before by Amico,
Di Lorenzo and Osterloh.9 They managed to construct the Hi

apparently by inspection, without presenting a systematic ap-
proach for their derivation, and in their approach the consis-
tency condition ~76! appears as a set of off-shell Bethe-
ansatz equations. In our work, we presented a systematic
derivation of these results from a vertex model with twisted
boundary conditions, and the consistency condition ~76! cor-
responds directly to the on-shell Bethe-ansatz equations of
this model. Thus, we hope to have shed some additional light
on the reasons why the DBCS model and its generalizations
are integrable and Bethe-ansatz solvable, and on the under-
lying algebraic structure of the solutions. We hope that our
work shows the way towards further progress in applying the
powerful formalism of the ABA to the DBCS and related
models, e.g., for the calculation of correlation functions15

such as ^S i
zS j

z& or ^S i
2S j

1& , which are of importance for un-
derstanding the nature of pairing correlations in nanoscale
superconducting grains.2,3
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