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We present a conceptually simple, analytical calculation of the finite-size crossover spectrum of the aniso-

tropic two-channel Kondo ~2CK! model at its Toulouse point. We use Emery and Kivelson’s method, gener-

alized in two ways. First, we construct all boson fields and Klein factors explicitly in terms of the model’s

original fermion operators and, secondly, we clarify explicitly how the Klein factors needed when refermion-

izing act on the original Fock space. This enables us to follow the evolution of the 2CK model’s free-fermion

states to its exact eigenstates for arbitrary magnetic fields and spin-flip coupling strengths. We thus obtain an

analytic description of the crossover of the finite-size spectrum to the non-Fermi-liquid fixed point, where we

recover the conformal field theory results ~implying a direct proof of Affleck and Ludwig’s fusion hypothesis!.

From the finite-size spectrum we extract the operator content of the 2CK fixed point and the dimension of

various relevant and irrelevant perturbations. Our method can easily be generalized to include various

symmetry-breaking perturbations, and to study the crossover to other fixed points produced by these. Further-

more, it establishes instructive connections between different renormalization group schemes. We also apply

our method to the single-channel Kondo model.

I. INTRODUCTION

One of the most intriguing aspects of a non-Fermi liquid
~NFL! is that its elementary excitations are not simply re-
lated to the bare excitations of the non-interacting Fermi liq-
uid; gaining an understanding of the nature of the elementary
excitations of a NFL is thus an important conceptual chal-
lenge. The two-channel Kondo ~2CK! model, introduced in
1980 by Nozières and Blandin,1 is one of the simplest and
most-studied quantum impurity models with NFL behavior,
and offers the rare opportunity to address this question di-
rectly: it has both a free and a NFL fixed point, and the
crossover between the two, including the change in the na-
ture of the elementary excitations, can be analyzed exactly
using the bosonization approach of Emery and Kivelson2

~EK!.
In the 2CK model two channels of spinful conduction

electrons interact with a single spin 1/2 impurity via a local
antiferromagnetic exchange interaction. In contrast to the
single-channel Kondo ~1CK! model, which has a stable
infinite-coupling fixed point at which the conduction elec-
trons screen the impurity spin completely, in the two-channel
case the impurity spin is overscreened at infinite coupling,
and the 2CK model’s infinite-coupling fixed point is un-
stable. A stable NFL fixed point exists at intermediate cou-
pling, and is characterized by a nonzero residual entropy and
nonanalytical behavior for various physical quantities. The
relevance of this model to physical systems is extensively
reviewed in Ref. 3.

In this paper, we use EK’s method to perform a concep-
tually simple, analytic calculation of the finite-size crossover
spectrum of the 2CK model between the free and the NFL

fixed points, a result first reported in Ref. 4. The calculation

enables us to elucidate the nature of the NFL excitations at
the fixed point in great and instructive detail, and to see
explicitly how the symmetries of the NFL fixed point emerge
as it is approached from the crossover region. Furthermore it
establishes instructive connections between various popular
renormalization group ~RG! schemes, since it allows one to
analytically illustrate their main ideas.

The two-channel Kondo model has of course already been
studied theoretically by an impressive number of different
methods, which are comprehensively reviewed in Ref. 3.
They include approximate methods such as multiplicative1,5,6

and path-integral7,8 RG approaches and slave-boson
methods;9–11 effective models such as the so-called compac-
tified model,12–15 which is partially equivalent to the 2CK
model; the numerical RG ~NRG!;16–18 and exact methods,
such as the Bethe ansatz,19–21 conformal field theory
~CFT!,18,22–24 and Abelian bosonization.2,4,25–30

Among the several exact approaches to solving the 2CK
model, the one that in our opinion is the most simple and
straightforward, is that introduced by Emery and Kivelson
~EK!,2 who employ one-dimensional Abelian bosonization
~pedagogically reviewed in Ref. 31! and refermionization to
show that along the so-called Emery-Kivelson line ~Toulouse
point! the anisotropic 2CK model maps onto a quadratic

resonant-level model. Since spin anisotropy is irrelevant for
the 2CK Kondo model18 ~as also shown below!, their work
also yielded new insight into the generic behavior of the
isotropic 2CK model.

Though the approach is constrained to the vicinity of the
EK line, the latter is stable32 and connects the Fermi-liquid
and non-Fermi-liquid regimes, so that EK’s method captures
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both the model’s NFL behavior and the crossover from the

free to the NFL fixed point. EK calculated a number of ther-

modynamic and impurity properties and also some electron

correlation functions, and explained the NFL behavior by the

observation that only ‘‘one half’’ of the impurity’s Majorana

degrees of freedom couples to the electrons. Although at the

EK line the properties of the model are somewhat specific

since the leading irrelevant operator vanishes along it, the

generic behavior can easily be derived by perturbation theory
in its vicinity. The EK method has since been fruitfully ap-
plied and generalized to several related quantum impurity
problems.25–29 Ye in particular showed how to use the EK
method and simple scaling arguments27 to identify easily the
fixed points of various bosonizable quantum impurity mod-
els, including the k-channel spin anisotropic Kondo
model,27~a! and how to calculate electronic correlation func-
tions at these fixed points.

In a recent publication,4 we have shown that the power of
EK-bosonization can actually be increased even more @see
points ~i!–~vi! and ~x!–~xii! below# by generalizing it to fi-

nite system size L. Though retaining terms of order 1/L natu-
rally requires some additional technical effort, none of the
conceptual simplicity of the EK approach is thereby lost. The
present paper is devoted to presenting the calculations by
which the results of Ref. 4 were obtained in explicit detail,
and includes discussions of a number of subtleties and results
not mentioned there.

The generalization to finite system size necessitates two
important modifications relative to the work of EK. ~1!
While they use the field-theoretical approach to bosonization
in which the bosonization relation ca j.Fa je

2ifa j is used
merely as a formal correspondence, we use the more careful
constructive bosonization procedure of Haldane,33,31 where
both the boson fields fa j and Klein factors Fa j are con-
structed explicitly from the original ca j operators, so that the
bosonization formula becomes an operator identity in Fock
space. ~2! Since EK were interested mainly in impurity prop-
erties, they did not need to discuss at all the Klein factors
Fa j @which lower the number of a j electrons by one and
ensure proper anticommutation relations for the ca j’s#.
However, as has been pointed out by several authors
recently,28,31,34,35 these Klein may be extremely important in
some situations, and they are essential for quantities like the
finite-size spectrum or various electron correlation
functions.33,4 Therefore it is crucial to specify how the new
Klein factors of the refermionized operators act on the Fock
space. As we shall see, these new Klein factors are only well
defined on a suitably enlarged Fock space that also contains
unphysical states, which must be discarded at the end using
certain gluing conditions.

With these modifications, EK’s bosonization approach en-
ables us by straightforward diagonalization of the quadratic
resonant-level model ~i! to analytically calculate the cross-
over of the 2CK model’s finite-size spectrum from the FL to
the NFL fixed point, at which we reproduce the fixed-point
spectrum previously found by CFT using a certain fusion
hypothesis ~which we thereby prove directly!; ~ii! to con-
struct the eigenstates of the 2CK model corresponding to this
crossover spectrum explicitly, thereby elucidating the nature
of the NFL excitations; and ~iii! to extract the operator con-
tent of the NFL fixed point and determine the dimensions of

different relevant and irrelevant operators. We also prove

that the leading irrelevant operator is missing along the EK

line but is present away from it. Since our method works also

in the presence of an arbitrary magnetic field ~unlike CFT!,
we can also ~iv! investigate how a finite magnetic field de-

stroys the NFL spectrum for the low-energy excitations of

the model and restores the FL properties. ~v! Furthermore,

our finite-size bosonization approach can easily be related to

various popular RG methods; it therefore not only provides a

useful bridge between them, but can potentially be used as a

pedagogical tool for analytically illustrating their main ideas.

~vi! For completeness, we also construct the analytical finite

size spectrum of the single channel Kondo model, and cal-

culate the crossover between its weak and strong coupling

Fermi liquid fixed points.

In a future publication36 we shall show that EK’s method

furthermore allows one ~vii! to construct very easily the scat-

tering states of the model; ~viii! to verify explicitly the va-

lidity of the bosonic description of the NFL fixed point

worked out in Refs. 30 and 27; ~ix! to determine the fixed

point boundary conditions at the impurity site for the differ-

ent currents and fields in a very straightforward way, ~x! as

well as the leading corrections to these; ~xi! to calculate all

correlation functions at and around the NFL fixed point; and

~xii! to clarify the role of the dynamics of Klein factors in

correlation functions. @Although ~vii! to ~ix! can also be ob-

tained in a system of infinite size, ~x! to ~xii! turn out to

depend crucially on the finite-size results of the present pa-

per.# This implies that all CFT results can be checked from

first principles using bosonization.

The paper is organized as follows. In Sec. II we define the

2CK model to be studied. For completeness, and since the

proper use of Klein factors is essential, Sec. III briefly re-

views the ‘‘constructive’’ ~operator identity-based! approach

to finite-size bosonization used throughout this paper. The

Emery-Kivelson mapping onto a resonant-level model is dis-

cussed in Sec. IV, using our novel, more explicit formulation

of refermionization within a suitably extended Fock space.

The solution of the resonant level model and the construction

of the NFL spectrum using generalized gluing conditions is

presented in Sec. V. In Sec. VI the results of our finite-size

calculations are compared with and interpreted in terms of

various RG procedures. In Sec. VII we show the finite-size

spectrum for the 1CK model. Finally, in Sec. VIII we sum-

marize our conclusions.

The centerpiece of the main text is our uncommonly care-

ful and detailed finite-size formulation of the EK mapping.

Technicalities not related to this mapping are relegated to

four Appendixes ~see Ref. 37!. Appendix A discusses in

some detail matters related to the choice of an ultraviolet

cutoff, and also gives the often-used position-space defini-

tion of the 2CK model, to facilitate comparison with our

momentum-space version. The construction of the extended

Fock space needed for refermionization is discussed in Ap-

pendix B, and the technical details used to diagonalize the

resonant-level model and to calculate several of its properties

are given in Appendix C. Finally, in Appendix D we present
our finite-size bosonization calculation for the one-channel
Kondo model as well.
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II. DEFINITION OF THE MODEL

Throughout the main part of this paper we shall use the
standard 2CK Hamiltonian in momentum space. We con-
sider a magnetic impurity with spin 1/2 placed at the origin
of a sphere of radius R5L/2, filled with two species of free,
spinful conduction electrons, labeled by a spin index a
5(↑ ,↓)5(1 ,2) and a channel or flavor index j5(1,2)5

(1 ,2). We assume that the interaction between the impurity
and the conduction electron is sufficiently short-ranged that
it involves only s-wave conduction electrons, whose kinetic
energy can be written as

H05(
ka j

k:cka j
† cka j : ~vF5\51 !. ~1!

The operator cka j
† creates an s-wave conduction electron of

species (a j) with radial momentum k[p2pF relative to the
Fermi momentum pF , and the dispersion has been linearized
around the Fermi energy «F : «k2«F'k . The colons in Eq.
~1! denote normal ordering with respect to the free Fermi sea

or ‘‘vacuum state’’ u0W &0:

cka ju0W &0[0 for k.0, ~2a!

cka j
† u0W &0[0 for k<0. ~2b!

The cka j’s obey standard anticommutation relations

$cka j ,c
k8a8 j8

†
%5dkk8

daa8
d j j8

, where due to radial momen-

tum quantization the values of k are quantized:

k5

2p

L
~nk2P0/2!, nkPZ. ~3!

Here P050 or 1, since at zero temperature the chemical
potential ~and hence pF) must either coincide with a degen-
erate level (P050) or lie midway between two of them
(P051). The level spacing in both cases is

DL52p/L . ~4!

The s-wave conduction electrons can also be described by
a one-dimensional chiral field23~b!

ca j~x ![A2p

L (
nkPZ

e2ikxcka j , S xPF2

L

2
,
L

2
G D , ~5!

$ca j~x !,ca8 j8

†
~x8!%5daa8

d j j8
2pd~x2x8!. ~6!

In the continuum limit L→` , the x.0 and x,0 portions of
ca j(x) can be associated with the incoming and outgoing
scattering states, respectively. Note that for P050 or 1 the
fields ca j(x) have periodic or antiperiodic boundary condi-
tions at x56L/2, respectively, hence P0 will be called the
‘‘periodicity parameter.’’

We assume a short-ranged anisotropic exchange interac-
tion between the impurity spin and the s-wave conduction
electron spin density at the origin of the form

H int5DL (
m ,k ,k8

a ,a8, j

lmSm :cka j
† S 1

2
saa8

m D ck8a8 j : . ~7!

Here the Sm (m5x ,y ,z) are the impurity spin operators, with

Sz eigenvalues (⇑ ,⇓)5( 1
2 ,2 1

2 ), and the lm’s denote dimen-

sionless couplings: lz generates different phase shifts for
spin-up and spin-down conduction electrons, while lx[ly

[l' describe spin-flip scattering off the impurity. Finally,
we add a magnetic term

Hh5h iSz1heN̂s , ~8!

where h i and he denote the magnetic fields acting on the

impurity and conduction electron spins, respectively, and N̂s

denotes the total spin of the conduction electrons.
Since the constructive bosonization method requires an

unbounded spectrum, the fermion bandwidth cutoff is re-
moved ~i.e., taken to be infinite! in the equations above. This
ultraviolet cutoff will only be restored when we define the
new Bose fields in Eq. ~13! below.

III. BOSONIZATION BASICS

The key to diagonalizing the Hamiltonian is to find the
relevant quantum numbers of the problem and to bosonize
the Hamiltonian carefully. While bosonization is a widely
used technique, the so-called Klein factors mentioned in the
Introduction are often neglected or not treated with sufficient
care. In the present section we therefore discuss our
bosonization approach in somewhat more detail than usual,
formulating it as a set of operator identities in Fock space,
and emphasizing in particular the proper use of Klein factors
to ladder between states with different particle numbers in
Fock space.

A. Bosonization ingredients

As a first step we introduce the operators

N̂a j[(
k

:cka j
† cka j : , ~9!

which count the number of electrons in channel (a j) with

respect to the free electron reference ground state u0W &0. The

nonunique eigenstates of N̂a j will generically be denoted by

uNW &[uN↑1& ^ uN↓1& ^ uN↑2& ^ uN↓2&, where the Na j’s can be

arbitrary integers, i.e., NW PZ
4.

Next, we define bosonic electron-hole creators by

bqa j
† [

i

Anq

(
nkPZ

ck1qa j
† cka j , ~10!

where q52pnq /L.0 and the nq are positive integers. The

operators bqa j
† create ‘‘density excitations’’ with momentum

q in channel a j , satisfy standard bosonic commutation rela-

tions, and commute with the N̂a j’s:

@bqa j ,b
q8a8 j8

†
#5dqq8

daa8
d j j8

, @bqa j ,N̂a8 j8
#50.

~11!

Among all states uNW & with given NW , there is a unique state,

to be denoted by uNW &0, that contains no holes and thus has
the defining property
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bqa juNW &050 ~for any q.0, a , j !. ~12!

We shall call it the ‘‘NW -particle ground state,’’ since in the

absence of interactions no uNW & has a lower energy than uNW &0;

likewise, no uNW &0 has a lower energy than the ‘‘vacuum

state’’ u0W &0 defined in Eq. ~2!. Note, though, that if P050,

the states c0a ju0W &0 are degenerate with u0W &0, because then

c0a j removes a zero-energy electron. Any NW -electron state

uNW & can be written as uNW &5 f (b†)uNW &0, i.e., by acting on the

NW -electron ground state with an appropriate function of
electron-hole creation operators.33,31

Next, we define bosonic fields by

fa j~x ![ (
q.0

21

Anq

~e2iqxbqa j1e iqxbqa j
† !e2aq/2. ~13!

Here a;1/pF is a short-distance cutoff; it is introduced to
cure any ultraviolet divergences the theory may have ac-
quired by taking the fermion bandwidth to be infinite. It is
well known, however, that within this bosonization cutoff

scheme the coupling constants have different meanings than
for other standard regularization schemes using a finite fer-
mion bandwidth, and that the relations between coupling
constants in different regularization schemes can be found by
requiring that they yield the same phase shifts. This and
other cutoff related matters are discussed in Appendix A.37

The fields ]xfa j(x) are canonically conjugate to the
fa j(x)’s

@fa j~x !,]x8
fa8 j8

~x8!#52pi„da~x2x8!21/L…daa8
d j j8

,
~14!

where da(x)5a/p(x2
1a2) is the smeared delta function.

As final bosonization ingredient, we need the so-called
Klein factors Fa j , which ladder between states with differ-
ent Na j’s. By definition, the Fa j’s are required to satisfy the
following relations:

@Fa j ,N̂a8 j8
#5daa8

d j j8
Fa j , ~15a!

@Fa j ,bqa8 j8
#5@Fa j ,b

qa8 j8

†
#50, ~15b!

Fa jFa j
†

5Fa j
† Fa j51, ~15c!

$Fa j ,Fa8 j8

†
%52daa8

d j j8
~15d!

$Fa j ,Fa8 j8%50 for ~a j !Þ~a8 j8!. ~15e!

These relations imply that Fa j (Fa j
† ) decreases ~increases!

the electron number in channel $a j% by one without creating
particle-hole excitations. As shown in Refs. 33 or 31, the
construction Fa j5a1/2ca j(0)e ifa j(0), which explicitly ex-
presses Fa j in terms of the fermion operators cka j , has all
the desired properties.

B. Bosonization identities

Any expression involving the fermion operators cka j can
be rewritten in terms of the the Klein factors Fa j and boson
fields fa j defined above. In our notation, the standard

bosonization identities33 for the fermion field, density and
kinetic energy take the following forms:31

ca j~x !5Fa ja
21/2e2i(N̂a j2P0/2)2px/Le2ifa j(x), ~16!

1

2p
:ca j

† ~x !ca j~x !:5
1

2p
]xfa j~x !1N̂a j /L , ~17!

H05(
a j

DL

2
N̂a j~N̂a j112P0!1 (

a j
q.0

qbqa j
† bqa j . ~18!

Several comments are in order: ~i! in the limit a→0 Eqs.
~16! to ~18! are not mere formal correspondences between
the fermionic and bosonic expressions, but hold as rigorous
operator identities in Fock space. For aÞ0, they should be
viewed as conveniently regularized redefinitions of the fer-
mion fields and densities ~see37 Appendix A 2!. ~ii! The
Klein factors Fa j in Eq. ~16! play a twofold role: First, by
Eq. ~15a! they ensure that the right-hand side of Eq. ~16!
acting on any state indeed does lower the number of a j

electrons by one, just as ca j does; and secondly, by Eqs.
~15d! and ~15e! they ensure that fields with different (a j)’s
do have the proper anticommutation relations ~6!. ~iii! In

Eqs. ~18! the first DL term is just 0^NW uH0uNW &0, the energy of

the NW -particle ground state uNW &0 relative to u0W &0. Since the
Klein factors do not commute with this term, they evidently
cannot be neglected when calculating the full model’s finite-
size spectrum, for which all terms of order DL must be re-
tained. The second term of Eq. ~18! describes the energy of

electron-hole excitations relative to u0W &0.

IV. EMERY-KIVELSON MAPPING

In this section, we map the 2CK model onto a resonant
level model, using a finite-size version of the strategy in-
vented by Emery and Kivelson: using bosonization and re-
fermionization, we make a unitary transformation to a more
convenient basis, in which the Hamiltonian is quadratic for a
certain choice of parameters.

A. Conserved quantum numbers

The quantum numbers Na j of Eq. ~9! are conserved under
the action of H0 , Hh, and Hz ~the lz term of H int[Hz

1H'), but fluctuate under the action of the spin-flip interac-
tion H' ~the l' term!. On the other hand, the total charge
and flavor of the conduction electrons is obviously conserved
by all terms in the Hamiltonian, including H' . Therefore it
is natural to introduce the following new quantum numbers:

S N̂c

N̂s

N̂f

N̂x

D [
1

2S 1 1 1 1

1 21 1 21

1 1 21 21

1 21 21 1

D S N̂↑1

N̂↓1

N̂↑2

N̂↓2

D , ~19!

where 2N̂c , N̂s , and N̂f denote the total charge, spin, and

flavor of the conduction electrons, and N̂x measures the spin
difference between channels 1 and 2. Clearly, any conduc-

PRB 61 6921ANALYTICAL CALCULATION OF THE FINITE-SIZE . . .



tion electron state uNW & can equally well be labeled by the

corresponding quantum numbers NW [(Nc ,Ns ,Nf ,Nx).
However, whereas the Na j’s take arbitrary independent inte-

ger values, the NW ’s generated by Eq. ~19! ~with NW PZ
4) can

easily be shown to satisfy the following free gluing condi-

tions:

NW P~Z1P/2!4, ~20a!

Nc6Nf5~Ns6Nx!mod 2, ~20b!

where the parity index P equals 0 or 1 if the total number of
electrons is even or odd, respectively. Equation ~20a! formal-
izes the fact that the addition or removal of one a j electron
to or from the system changes each of the Ny’s by 61/2, so
that they are either all integers or all half-integers. Equation

~20b! selects from the set of all NW of the form ~20a! the

physical ones for which NW PZ
4, and eliminates the unphysi-

cal ones for which NW P(Z11/2)4.
In the new basis, Nc and Nf are conserved; moreover, Ns

fluctuates only ‘‘mildly’’ between the values ST71/2, since
the total spin

ST[Ns1Sz ~21!

is conserved. In contrast, Nx fluctuates ‘‘wildly,’’ because an
appropriate succession of spin flips can produce any Nx that
satisfies Eq. ~20b!, as illustrated in Fig. 1. This wildly fluc-

tuating quantum number will be seen below to be at the heart

of the 2CK model’s NFL behavior. In revealing contrast, the
1CK model, which shows no NFL behavior, lacks such a
wildly fluctuating quantum number ~see Appendix D!.

Since ST , Nc, and Nf are conserved, the Fock space Fphys

of all physical states can evidently be divided as follows into
subspaces invariant under the action of H:

Fphys5 (
% 8ST ,Nc ,Nf

Sphys~ST ,Nc ,Nf !, ~22!

Sphys~ST ,Nc ,Nf !5 (
% 8Nx

$uNc ,ST21/2, Nf ,Nx ;⇑&

% uNc ,ST11/2, Nf ,Nx11;⇓&%.

~23!

In both equations the prime on the sum indicates a restriction
to those Ny’s that satisfy the free gluing conditions ~20!. To

diagonalize the Hamiltonian for given ST , Nc, and Nf , it

evidently suffices to restrict one’s attention to the corre-
sponding subspace Sphys(ST ,Nc ,Nf).

B. Emery-Kivelson transformation

Following Emery and Kivelson, we now introduce, in
analogy to Eq. ~19!, new electron-hole operators and boson
fields via the transformations

bqy[(
a j

Ry ,a j bqa j

wy[(
a j

Ry ,a j fa j

J ~y5c ,s , f ,x !, ~24!

where Ry ,a j is the unitary matrix in Eq. ~19!. These obey
relations analogous to Eqs. ~11! and ~14!, with a j→y . More-

over, we define uNW &0, the NW -particle vacuum state, to satisfy

bqyuNW &050, as in Eq. ~12!. If NW and NW are related by Eq.

~19!, then the states uNW &0 and uNW &0 are equal up to an unim-
portant phase ~see37 Appendix B!, because both have the

same N̂a j and N̂y eigenvalues and both are annihilated by all
bqa j’s and bqy’s.

Using the quantum numbers N̂y and the bosonic fields
wy(x), the H0 of Eq. ~18! becomes

H05DLF N̂c~12P0!1(
y

N̂y
2/2G1 (

y , q.0
qbqy

† bqy ,

~25!

while Eqs. ~17! and ~16! are used to obtain, respectively,

Hz5lz@]xws~0 !1DLN̂s#Sz , ~26!

H'5

l'

2a
@e2iws(0)S1~F↓1

† F↑1e2iwx(0)

1F↓2
† F↑2e iwx(0)!1H.c.# . ~27!

Equations ~25!–~27! and ~8! constitute the bosonized form of
the Hamiltonian for the anisotropic 2CK model, up to and

including terms of order DL.
Next we simplify Hz . It merely causes a phase shift in the

spin sector, which can be obtained explicitly using a unitary
transformation ~due to EK! parametrized by a real number g ,
to be determined below:

H→H85UHU†, U[e igSzws(0). ~28!

The impurity spin, spin-diagonal part of H, spin boson field
and fermion fields then transform as follows ~using, e.g., the
identities in Appendix C of Ref. 31!:

S6→US6U†
5e6igws(0)S6 , ~29!

H01Hz→H01~lz2g !]xws~0 !Sz1lzDLN̂sSz

1g2@1/~4a !2p/~4L !# , ~30!

ws~x !→ws~x !22gSz arctan~x/a ! ~ uxu!L !, ~31!

ca j~x !→ca j~x !e iagSz arctan(x/a) ~ uxu!L !. ~32!

FIG. 1. Under a succession of spin flips, Ns fluctuates mildly

between ST71/2 ~here ST51/2); in contrast, Nx fluctuates wildly,

since it can acquire any value consistent with the gluing conditions

~20!. The dotted line represents the reference energy 0 up to which

the free Fermi sea is filled for P051, the filled and empty circles

represent filled and empty single-particle states with energy k,

which increases from left to right.
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Equation ~30! is most easily derived in the momentum-space
representation, but for Eq. ~31!, the position-space represen-
tation is more convenient @first evaluate U]xws(x)U21 using
Eq. ~14!, then integrate#. Equation ~32! follows from Eq.
~31!, since ca j}e2iaws/2.

Recalling that ]xws(x)/2p contributes to the conduction
electron spin density, we note by differentiating Eq. ~31! that
the EK transformation produces a change in the spin density
of 22gSzpda(x)/2p , and thus ties a spin of 2gSz from the
conduction band to the impurity spin Sz .

To eliminate the Sz]xws term in Eq. ~30!, we now choose
g[lz ; then the spin-flip-independent part of the Hamil-
tonian takes the form

H8~l'50 !5lzDLN̂sSz1(
y

DLN̂y
2/21 (

y , q.0
qbqy

† bqy

1Hh1const, ~33!

and H'8 contains the factors e6i(12lz)ws(0). These factors are

simply equal to 1 at the Emery-Kivelson line lz51, where

H'8 simplifies to

H'8 5

l'

2a
@S1~F↓1

† F↑1e2iwx(0)
1F↓2

† F↑2e iwx(0)!1H.c.# .

~34!

We shall henceforth focus on the case lz51, which will
enable us to diagonalize the model exactly by refermioniza-
tion. Deviations from the EK line will be shown in Sec. VI C
to be irrelevant, by taking g51 but lz511dlz , and doing
perturbation theory in

dHz85dlz@]xws~0 !1DLN̂s#Sz . ~35!

The crucial property of the EK line is that it contains the
NFL intermediate-coupling fixed point. A Heuristic way to
see this it to note that on the EK line, the impurity spin is in
fact ‘‘perfectly screened:’’ the spin 2gSz from the conduc-
tion band, that is tied to the impurity by the EK transforma-
tion, is equal to 2Sz if g5lz51. It thus precisely ‘‘can-
cels’’ the impurity’s spin Sz , and forms a ‘‘perfectly
screened singlet’’ with zero total spin ~without breaking
channel symmetry!, in agreement with the heuristic argu-
ments of Nozières and Blandin.1

Of course, there are more rigorous ways of seeing that the
NFL fixed point lies on the EK line. First, for lz51 it fol-
lows from Eq. ~32! that the phase shift d of the outgoing
relative to the incoming fields, defined by ca j(02)
[e i2dca j(01) ~with u06u@a), is udu5p/4, which is just the
value known for the NFL fixed point from other
approaches.7,18 Secondly, we shall deduce in Sec. VI C from
an analysis of the finite-size spectrum that the leading irrel-
evant operators with dimensions 1/2 vanish exclusively
along this line, but not away from it. Since the presence or
absence of the leading irrelevant operators strongly influ-
ences the low-temperature properties of the model such as its
critical exponents,2,26 and since these must stay invariant un-
der any RG transformation, one concludes that the Emery-
Kivelson line must be stable under RG transformations.

C. Refermionization

1. Definition of new Klein factors

The most nontrivial step in the solution of the model is
the proper treatment of Klein factors when refermionizing
the transformed Hamiltonian. In their original treatment EK
did not discuss Klein factors at all and simply identified

e2iwx(x)/Aa as a new pseudofermion field cx(x). Though
this was adequate for their purposes, the proper consideration
of the Klein factors and gluing conditions is essential for
solving the model rigorously and obtaining the finite-size
spectrum. Other authors tried to improve the Emery-
Kivelson procedure by representing the Klein factors by
Fa j;e2iQa j, where Qa j is a ‘‘phase operator conjugate to

N̂a j ,’’ and added these to the bosonic fields fa j before mak-
ing the linear transformation ~24!. This procedure is prob-
lematic, however, since then e2iwy(0) contains factors such as
e2iQa j/2, which are ill defined ~see Appendix D 2 of Ref. 31!.

A rigorous way of dealing with Klein factors when refer-
mionizing was presented in Ref. 4 ~and adapted in Ref. 31 to
treat an impurity in a Luttinger liquid!: We introduce a set of

ladder operators F y
† and Fy (y5c ,s , f ,x) to raise or lower

the quantum numbers Ny by 61, with, by definition, the
following properties:

@Fy ,N̂y8
#5dyy8

Fy , ~36a!

@Fy ,bqy8
#5@Fy ,b

qy8

†
#50, ~36b!

FyF y
†
5F y

†Fy51, ~36c!

$Fy ,F
y8

†
%52 dyy8

, ~36d!

$Fy ,Fy8%50 for yÞy8. ~36e!

Now, note that the action of any one of the new Klein factors

Fy or F y
† respects the first of the free gluing conditions

~20a!, but not the second, Eq. ~20b!. More generally, Eq.
~20b! is respected only by products of an even number of
new Klein factors, but violated by products of an odd num-
ber of them. This implies that the physical Fock space Fphys

of all uNW & satisfying both Eqs. ~20a! and ~20b! is closed
under the action of even but not of odd products of new
Klein factors. The action of arbitrary combinations of new

Klein factors thus generates an extended Fock space Fext ,
which contains Fphys as a subspace and is spanned by the set

of all uNW & satisfying Eq. ~20a!, including unphysical states
violating Eq. ~20b!. In Appendix B we show that Fphys can
indeed be embedded in Fext by explicitly constructing a set
of basis states for Fext .

37

Since odd products of Fy’s lead out of Fphys , they cannot

be expressed in terms of the original Klein factors Fa j ,
which leave Fphys invariant. However, the Hamiltonian con-
tains only even products of old Klein factors. Now, any com-

bination Fa j
† Fa8 j8

or Fa j
† Fa8 j8

†
of Klein factors just changes

two of the Na j quantum numbers. Using Eq. ~19! to read off
the corresponding changes in Ny , we can thus make the
following identifications between pairs of the old and new
Klein factors:
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F x
†F s

†[F↑1
† F↓1 , FxF s

†[F↑2
† F↓2 , ~37a!

F x
†F f

†[F↑1
† F↑2 , F c

†F s
†
5F↑1

† F↑2
† . ~37b!

These relations, which each involve an arbitrary choice of
sign, can be used to express any product of two old Klein

factors in terms of two new ones, e.g., F s
†F f

†

52(FxF s
†)(F x

†F f
†)5F↑1

† F↓2. Since relations ~37! by con-

struction respect Eq. ~19! ~as can be checked by acting on

any uNW &), they, and all similar bilinear relations derived from
them, also respect both free gluing conditions ~20!.

We can thus replace the Klein factor pairs occurring in
Eq. ~34! by the ones in Eq. ~37a!:

H'8 5

l'

2a
@S1Fs~Fxe2iwx(0)

1Fx
†e iwx(0)!1H.c.# . ~38!

The only consequence of this change is that we now work in
the extended Fock space Fext , and will diagonalize H8 not in
the physical invariant subspace Sphys(ST ,Nc ,Nf) of Eq.
~23!, but in the corresponding extended subspace
Sext(ST ,Nc ,Nf), given by an equation similar to Eq. ~23!,
but with the % 8Nx sum now restricted only to satisfy Eq.
~20a!, not also Eq. ~20b!. At the end of the calculation we
shall then use the gluing condition ~20b! to discard unphysi-
cal states. This approach is completely analogous to the use
of gluing conditions in AL’s CFT solution of the 2CK
model. It is also somewhat analogous to Abrikosov’s
pseudofermion technique38 of representing a spin operator
via pseudofermions acting in an enlarged Hilbert space, and
projecting out unphysical states at the end.

2. Pseudofermions and refermionized Hamiltonian

We now note that H'8 of Eq. ~38! can be written in a form

quadratic in fermionic variables

H'8 5

l'

2Aa
@cx~0 !1cx

†~0 !#~cd2cd
†!, ~39!

by defining a local pseudofermion cd and a pseudofermion
field cx(x) by the following refermionization relations:

cd [Fs
†S2 , cd

†cd5Sz11/2, ~40!

cx~x ! [Fxa21/2e2i(N̂x21/2)2px/L e2iwx(x) ~41a!

[A2p

L (
k̄

e2i k̄xc k̄x , ~41b!

where Eq. ~41b! defines the c k̄x as Fourier coefficients of the
field cx(x). For reasons discussed below, the field cx in Eq.
~41a! has been defined in such a way that its boundary con-
dition at 6L/2 is P dependent, since NxPZ1P/2 and wx(x)

is a periodic function. Thus the quantized k̄ momenta in the
Fourier expansion ~41b! must have the form

k̄5DL@n k̄2~12P !/2# ~n k̄PZ!. ~42!

The new pseudofermions were constructed in such a way
that they satisfy the following commutation-anticommutation
relations:

$c k̄x ,c
k̄8x

†
%5d k̄ k̄8

, $cd ,cd
†%51, ~43!

$cd ,c
k̄x

†
%5$cd ,c k̄x%50, ~44!

@cd ,N̂s#5cd , ~45!

which follow directly from the properties of wx and Eqs.
~36!. Note that cd lowers the impurity spin, raises the total

electron spin N̂s and hence conserves the total spin ST ,
whereas cx conserves each of the impurity, electron and total
spins.

To relate the number operator for the new
x-pseudofermions to the quantum number Nx , we must de-
fine a free reference ground state, say u0&Sext

, in the extended

subspace Sext , with respect to which the number of pseudo-
fermions are counted. In analogy to Eq. ~2!, we define it by

c k̄xu0&Sext
[0 for k̄.0, ~46a!

c
k̄x

†
u0&Sext

[0 for k̄<0, ~46b!

cdu0&Sext
[0 for «d.0, i.e., nd

(0)[0, ~46c!

cd
†u0&Sext

[0 for «d<0, i.e., nd
(0)[1. ~46d!

Here «d , whose value will be derived below @see Eq. ~52!#,

is the energy of the cd pseudofermion, and nd
(0) denotes its

occupation number in the reference ground state u0&Sext
. Us-

ing colons to henceforth denote normal ordering of the

pseudofermions with respect to u0&Sext
, we have :cd

†cd :

5cd
†cd2nd

(0) . Furthermore, we define the number operator

for the x pseudofermions by N̄
ˆ

x[( k̄ :c
k̄x

†
c k̄x : . Then

N̄
ˆ

x5N̂x2P/2 ~47!

holds as an operator identity. This can be seen intuitively by
noting that cx;Fx;c k̄x @by Eq. ~41!#, hence the application

of cx ~or cx
†) to a state decreases ~or increases! both Nx and

N̄x by one. These two numbers can thus differ only by a

constant, which must ensure that N̄x is an integer. Our defi-
nition ~46! of u0&Sext

effectively fixes this constant to be P/2,

by setting N̄x50 for Nx5P/2 ~see Appendix A 3 for a rig-
orous argument37!.

We are now ready to refermionize the Hamiltonian H8.

The kinetic energy of the k̄ pseudofermions obeys

(
k̄

k̄:c
k̄x

†
c k̄x :5

DL

2
N̂̄x~ N̂̄x1P !1(

q
q bqx

† bqx , ~48!

an operator identity which follows by analogy with Eqs. ~1!

and ~18! ~also see37 Appendix A 3!. Now note that N̂̄x( N̂̄x

1P)5N̂x
2
2P/4, i.e., Eq. ~48! does not contain a term linear

in N̂x . Actually, the choice of the phase e2i(N̂x21/2)2px/L in
our refermionization ansatz ~41a! for cx(x) was made spe-
cifically to achieve this. Hence Eq. ~48! can be directly used
to represent the kinetic energy of the x sector in Eq. ~25! in
terms of c k̄x fermions:
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Hx05DLN̂x
2/21 (

q.0
qbqx

† bqx ~49a!

5(
k̄

k̄:c
k̄x

†
c k̄x :1DLP/8. ~49b!

As a check, note that this equation also follows from the
following observations. First, the equation of motion for the
field cx(x), expressed as Eq. ~41a! or ~41b!, is the same
when calculated using Eq. ~49a! or ~49b!, respectively, and
therefore the latter two expressions can differ only by a con-
stant; and secondly, this constant can be determined to be
DLP/8, by requiring the free ground state energies for u0&Sext

given by the two expressions to be the same.
Finally, in the subspace Sphys @of Eq. ~23!# and hence also

in Sext , we can use Eqs. ~21! and ~40! to express N̂sSz and

N̂s
2 in terms of cd

†cd . Thus, the EK-transformed 2CK Hamil-

tonian of Eqs. ~33! and ~34! takes the form

H85Hcs f1Hx1EG1const, ~50!

Hcs f5 (
c ,s , f

(
q.0

qbqy
† bqy , ~51!

Hx5«d :cd
†cd :1(

k̄

k̄:c
k̄x

†
c k̄x :

1ADLG(
k̄

~c
k̄x

†
1c k̄x!~cd2cd

†!, ~52!

EG5DL@Nc~12P0!1~N c
2
1N f

2
1ST

2
21/4!/21P/8#

1«d~nd
(0)

21/2!1SThe . ~53!

The charge, spin, and flavor degrees of freedom in Hcs f evi-
dently decouple completely. Hx in Eq. ~52! has the form of a
quadratic resonant level model whose ‘‘resonant level’’ has
energy «d and width G , where «d[h i2he is the energy cost

for an impurity spin-flip, and G[l'

2 /4a , which will be iden-

tified below as the Kondo temperature.
EG is the ‘‘free ground state energy’’ of the subspace Sext

in the presence of magnetic fields. Its SThe term implies that
the magnetic fields do not enter only in the combination h i

2he of «d , thus the role of the magnetic field he applied to
the conduction electrons is somewhat different from that of
the local field h i . Note though, that for he52nDL ~with n

PZ) the SThe term can formally be absorbed ~up to a total

energy shift! by introducing a ‘‘new total spin’’ ST85ST

12n , since then DLST
2 /21SThe5DLST8

2/222n2DL . Now,

since the construction of the complete finite-size spectrum
involves enumerating all possible values of ST , and since the
generalized gluing condition ~69! to be derived below is in-
variant under ST→ST12n , the finite-size spectrum for he

52nDL and a local field h i ~so that «d5h i22nDL) will be
identical to that for he50 and a local field of h i22nDL ~so
that «d is unchanged!. The origin of this ‘‘periodicity’’ is
that as he increases, at each value 2nDL a ‘‘level crossing’’
occurs in which the free-electron ground state changes from,
say, uNc ,Ns ,Nf ,Nx&0 to a new one differing from it only in

the spin quantum number, namely, uNc ,Ns22,Nf ,Nx&0, by
flipping the topmost spin-↑ electrons in both channels j

51,2 to ↓ .
For general values heÞ2nDL , there is no such symmetry

~essentially since electron-hole symmetry in the spin sector
is lost!, and the corresponding finite-size spectrum differs
from that at the periodicity points in that some additional
splittings of states occur.39 For simplicity we henceforth set
he50 and consider only a local magnetic field, with «d

[h i , but the more general case heÞ0 can be treated com-
pletely analogously.

V. FINITE-SIZE SPECTRUM OF 2CK MODEL

A. Diagonalization of Hx

Since Hcs f is trivial, we just have to diagonalize the reso-
nant level part Hx in the extended subspace Sext(ST ,Nc ,Nf),
which is straightforward in principle, since Hx is quadratic.
However, special care is needed regarding normal ordering:
the change in ground state energy due to the interaction turns
out to be of order 2G , and the subleading ~state-dependent!
contributions of order DL relative to this energy have to be
extracted carefully when constructing the finite-size spec-
trum.

As first step, we define new fermionic excitations, whose
energies are strictly non-negative,

a k̄[~c k̄x1c
2 k̄x

†
!/A2

b k̄[2i~c k̄x2c
2 k̄x

†
!/A2

J for k̄.0, ~54a!

a0[c0x
† for k̄50 if P51, ~54b!

ad[H cd for «d.0,

cd
† for «d<0,

~54c!

where the b k̄’s decouple completely from the impurity:

Hx5 (
k̄>0

k̄a
k̄

†
a k̄1 (

k̄.0

k̄b
k̄

†
b k̄1u«duad

†ad

1 (
k̄>0

V k̄~a
k̄

†
1a k̄!~ad2ad

†!. ~55!

Here the possible k̄ values are given by Eq. ~42!, and the
hybridization amplitudes V k̄ by

V0[V k̄Þ0 /A2[e ipn
d
(0)

AGDL. ~56!

Note that in Eq. ~54! we purposefully defined an
† and b

k̄

†

such that the free reference ground state u0&Sext
, by Eq. ~46!,

contains no an
† or b

k̄

†
excitations, i.e., adu0&Sext

5a k̄u0&Sext

5b k̄u0&Sext
50. Note too that ad

†u0&Sext
is degenerate with

u0&Sext
if «d50, as is a0

†u0&Sext
in the odd electron sector, P

51. ~Figure 5 of Appendix C 5 illustrates these facts.!
Since the Hamiltonian Eq. ~55! is quadratic, it can be

diagonalized by a Bogoliubov transformation

Hx5 (
k̄.0

k̄b
k̄

†
b k̄1 (

«>0
«ã«

†ã«1dEG , ~57!
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ã«
†
5 (

nP$ k̄ ,d%
(

n56

B«nn~an
†
1nan!/2, ~58!

where dEG denotes the ground state energy shift of the in-

teracting vacuum u0̃&Sext
, defined as

ã«u0̃&Sext
5b k̄u0̃&Sext

[0. ~59!

The non-negative eigenenergies « and the coefficients B«nn

are determined from the usual relations

@Hx ,ã«
†#5«ã«

† , $ã«
† ,ã«8%5d««8

. ~60!

These are solved explicitly in Appendix C,37 with the follow-
ing results. The excitation energies « are the non-negative
roots of the transcendental equation

«4pG

«2
2«d

2 52cot p~«/DL2P/2 !, ~61!

and the ground state energy shift is

dEG5

u«du

2
1 (

k̄>0

k̄

2
2 (

«>0

«

2
. ~62!

For «.0, the coefficients B«nn are given by

B«d15̺~« !u«du, B«d25̺~« !« , ~63a!

B« k̄15̺~« !
2V k̄ «2

«2
2 k̄2

, B« k̄25̺~« !
2V k̄« k̄

«2
2 k̄2

, ~63b!

where the normalization factor ̺(«) is

̺~« !5F 2DLG

1

4
~«2

2«d
2!2

1DLG~«2
1«d

2!14p2G2«2G 1/2

.

~64!

For «50, the coefficients B0nn must be considered sepa-
rately and are given in Appendix C 2 b.37 Equations ~51!,
~53!, ~57!, and ~61!–~64!, together with the gluing conditions
~69! discussed in the next subsection, constitute a complete,
analytic solution of the 2CK model along the EK line.

B. Evolution of excitation energies

The eigenvalue equation ~61! is a central ingredient of our
analytical solution, since it yields the exact excitation ener-
gies « of Hx , and also allows one to explicitly identify the
various crossover scales of the problem. Let the label j

50,1,2, . . . , enumerate, in increasing order, the solutions
« j ,P of Eq. ~61! in a sector with parity P. Their smooth
evolution as functions of G and u«du can readily be under-
stood by a graphical analysis of Eq. ~61!, and is shown in
Figs. 2~a! and 2~b! for P50 and 1, respectively. All but the
lowest-lying j50 solutions can be parametrized as

« j ,P5DLF j2
1

2
2

P

2
1d j ,PG , j51,2,3, . . . , ~65a!

where d j ,PP@0,1# is the shift of « j ,P /DL from its G5«d

50 value and is determined self-consistently by

d j ,P5

1

2
1

1

p
arctan

1

4p
F Th

« j ,P

2

« j ,P

G
G , ~65b!

with Th[«d
2/G . The lowest-lying modes are given by

«0,0

DL

5H 0 for «d50,

~21/21d0,0!P~0,1/2# for «dÞ0,
~66a!

«0,150 for all G ,«d ~66b!

~see also Appendix37 C 2 b!.
Equation ~65b! shows very nicely that G and Th are cross-

over scales: First, in the absence of magnetic fields, i.e., for
u«du5uh iu5Th50, the spectral regime below G is strongly

perturbed @d j ,P.1/2 for « j ,P!G], whereas above G it is

only weakly perturbed @d j ,P.0 for « j ,P@G]. It is thus natu-
ral to identify the crossover scale G with the Kondo tempera-
ture TK.G .

Secondly, in the presence of a local magnetic field, Th

5h i
2/G.0 furnishes another crossover scale. When consid-

ering the Th-induced shifts in d j ,P relative to their values for
Th50, several cases can be distinguished: ~i! For Th!DL ,

i.e., for uh iu much smaller than a crossover field hc;AGDL,
none of the Th-induced shifts are strong. ~ii! For Th

@DL ,G , the crossover scale Th divides the spectrum into
two parts: the Th-induced shifts are weak for all levels with
«@Th , but strong for all those with «!Th . ~iii! For G
@Th@DL one can distinguish three physically different re-
gimes: the spectrum is NFL-like ~nonuniform level spacings!
in the intermediate regime Th!«!G , and Fermi-liquid-like
~with uniform level spacing! in the extreme regimes «@G

FIG. 2. Evolution of the excitation energies « j ,P , found by nu-

merically solving the eigenvalue equation ~61!. On the left the evo-

lution is shown as function of G/DLP@0,`) at Th50, and on the

right as function of Th /DLP@0,`) at fixed G/DL@1, for ~a! P

50 and ~b! P51. These excitation energies are combined in Table

II with excitations in the charge, spin, and flavor sectors to obtain

the evolution of the full finite-size spectrum shown in Fig. 3.
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and «!Th . In the last of these regimes ~rightmost part of
Fig. 2!, the set of lowest-lying «’s is identical to that for the
free case Th50, G50 ~leftmost part of Fig. 2!, except that
the free case has one more «50 mode, reflecting the impu-
rity’s twofold degeneracy due to spin reversal symmetry for
uh iu50. Since at a finite temperature physical quantities are
governed mostly by excitations of energy «;T , they will
show NFL behavior for G@T@Th and Fermi liquid behavior
for T@G or T!Th .2,19,26,40

C. Generalized gluing conditions

Next, we clarify how the exact many-body eigenstates of
the full Hamiltonian are to be constructed from the various
excitations in the c, s, f, and x sectors. A general eigenstate of
Hcs f1Hx in Sext has the form

uẼ&})
i51

Nã

ã« i

† )
j51

Nb

b
k̄ j

†
u0̃&Sext

, ~67!

where the proportionality sign indicates that excitations in
the c, s, and f sectors are not shown explicitly. However, as
emphasized earlier, of all such states only those in the physi-
cal subspace Sphys must be retained, and all others discarded

as being unphysical. To identify which uẼ& are physical, we
now derive a generalized gluing condition satisfied by them

that relates the parity of the number of ã«
† and b

k̄

†
excitations

in uẼ& to its quantum numbers Nc , Nf , and ST in the c, f,

and s sectors. To this end, we note that uẼ& can be physical

only if the state uE&[limG→0uẼ& , to which it reduces when G
is adiabatically switched off, satisfies the free gluing condi-
tions ~20!. The key to the derivation is the fact that although

the hybridization interaction H'8 of Eq. ~39! does not con-

serve the number of an
† excitations, it does conserve the par-

ity of their number.
To be explicit, let PẼ be the the parity of the number of

excitations of uẼ& relative to u0̃&Sext
:

PẼ[^ẼuF (
«>0

ã«
†ã«1 (

k̄.0

b
k̄

†
b k̄Gmod 2uẼ& . ~68!

During the adiabatic switch-off of G , this quantity of course
remains fixed, and hence equals PẼ(G→0). This in turn can
be written as

PẼ~G→0 !5^EuF (
n5d , k̄>0

an
†an1 (

k̄.0

b
k̄

†
b k̄Gmod 2uE&

5^Eu@ N̂̄x1ad
†ad#mod 2uE&

5^EuF S N̂x2

P

2
D1N̂s2ST2

1

2
1nd

(0)Gmod 2uE&.

The first equation follows because the hybridization interac-
tion preserves the parity of the excitation numbers; the sec-

ond follows because the c
k̄x

†
excitations counted by N̂̄x are

linear combinations of a k̄ , a
k̄

†
, b k̄ , and b

k̄

†
; and the third

follows from Eq. ~47! for N̂̄x and Eqs. ~54c!, ~40!, and ~21!

for ad . Imposing now the condition that uE& must be in Sphys

and hence satisfy Eq. ~20b!, we obtain

PẼ5H @Nc1Nf2ST2~P11 !/2#mod 2 ~«d.0 !,

@Nc1Nf2ST2~P21 !/2#mod 2 ~«d<0 !.
~69!

This generalized gluing condition specifies which of all the
possible states in Sext are physical, i.e., are in Sphys ; it
supplements the free gluing condition ~20a!, which stipulates
that ST61/2 must be integer ~half-integer! if Nc and Nf are
integer ~half-integer!.

D. Ground state energy shift

The form of Eq. ~62! for the change in ground state en-
ergy dEG suggests that it can be interpreted as the dynamical

binding energy of the impurity spin, which results from the
impurity-induced energy shifts of all the states in the filled
Fermi sea. @The factor 1/2 in Eq. ~62! reflects the fact2,41 that

only ‘‘half’’ of the x-pseudofermion field, namely, cx1cx
† ,

couples to the impurity in Eq. ~39!, while cx2cx
† remains

free.# For «d50, the number of levels strongly shifted by the
interaction is @by Eq. ~65b!# of order G/DL , and each of
these gets shifted roughly by DL/2; we can thus estimate that
the binding energy udEGu will be of order G;TK .

However, since the level shifts DL d j ,P also have a

P-dependence of order ;DL
2 /G @from Eq. ~65b!#, the total

ground state energy shift dEG will have a P dependence too,
of order ;DL . We therefore write

dEG[dEG
0

1P dE G
P , ~70!

where the first term is P independent and hence gives only an

overall energy shift. In contrast, dEG
P affects the finite-size

spectrum since it shifts the odd electron states (P51) rela-
tive to even electron states (P50), and hence must be evalu-
ated with particular care. This is done in Appendix C 4,37

where we find, for G/DL@1,

dEG
P

5H 2DL /8 ~Th50 !,

0 ~Th@DL!,
~71!

dEG
0 'H 22G@ ln~D/4pG !11# ~Th50 !,

22G@ ln~D/u«du!11# ~Th@DL ,G !.
~72!

Here D@G ,Th is a cutoff needed to regularize the sums in
Eq. ~62!. Note that for Th50, Eq. ~72! is consistent with the

estimate for dEG above, since D.1/a and G5l'

2 /4a . For

Th@G , the magnetic field u«du takes over as lower energy
scale in the logarithm instead of G .

E. Construction of the finite-size spectrum

Now we are finally ready to construct the finite-size
many-body excitation spectrum of the 2CK model. In doing
so, we shall generally use calligraphic E’s to denote dimen-
sionless energies measured in units of DL . Specifically, we
shall construct the dimensionless energies

Ẽ~L !5@ Ẽ~L !2Ẽmin~L !#/DL, ~73!
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associated with the lowest few exact many-body eigenstates

uẼ& of the full Hamiltonian H8 of ~50!, measured relative to

its ground state energy Ẽmin . For the sake of simplicity we
only consider the case with periodicity index P051 @see Eq.
~3!#, for which the ca j’s have anti-periodic boundary condi-
tions. In this case the free ground state in the electronic sec-

tor is unique, namely, u0W &0, which somewhat simplifies the
counting of states. ~Of course, one can use the same proce-
dure for P050, with similar results.!

The construction proceeds in three steps: we first evolve
toward the EK line, second evolve along the EK line, and
third turn on a local magnetic field. The results are summa-
rized in Fig. 3 and Table I. For technical details of the con-

struction, see Fig. 5 and Table II in Appendix C 5.37 Here we
just state the main ideas.

~i! Phase-shifted spectrum. For lzP@0,1# at l'5«d50,
the impurity has no dynamics, thus the spectrum is that of a
free-electron Fermi liquid with a Sz-dependent phase shift in

the spin sector, given by H8(l'50) of Eq. ~33!. It evolves
linearly with increasing lz , from Efree at lz50 to Ephase at
lz51, see Fig. 3~a!.

~ii! Crossover spectrum. Next we study the spectrum
along the EK line for G/DLP@0,`) at lz51, «d50. To this
end one first has to enumerate the lowest-lying physical

eigenstates uẼ& of the full Hamiltonian H8 in terms of the

excitations ã« j ,P

† , b
k̄

†
and bqy

† which diagonalize it, and fol-

low the evolution with increasing G/DL of the excitation en-

ergies « j ,P ~shown in Fig. 2!, and of the ground state energy

shift dEG
P @see Eq. ~71!#. This yields the crossover shown in

Fig. 3~b! from the phase-shifted to the NFL fixed point spec-
trum, consisting of a set of universal, dimensionless energies
defined by

ENFL[ lim
L→`

Ẽ~L;«d50,G !2Ẽmin~L;«d50,G !

DL

. ~74!

Satisfyingly, the spectrum of ENFL energies found in Fig. 3~b!
and Table I ~degeneracies are given in brackets! coincides
with the ones obtained in NRG and CFT
calculations.16,18,22,23 This constitutes a direct and straightfor-
ward analytical proof of the soundness of the latter ap-
proaches. In particular, it proves42 the so-called fusion hy-

pothesis employed by Affleck and Ludwig in their CFT
calculation of this spectrum.22,23 As is well-known from
CFT,43 each of the fixed-point values ENFL can be associated
with the scaling dimension of one of the operators character-
izing the fixed point. The occurrence of ENFL’s that are not
simply integers or half-integers is thus a very direct sign of
NFL physics, since these correspond to nonfermionic opera-
tors.

Our NFL spectrum demonstrates explicitly that the spin

anisotropy is irrelevant at the NFL fixed point,18 since if we
take the continuum limit DL→0 at fixed G , the fixed point
spectrum is evidently reached independently of the specific
value of G . More formally: the symmetry of our anisotropic
starting Hamiltonian with respect to transformations in the
charge, spin and flavor sectors is U(1)c3U(1)s3SU(2) f ,
i.e., in the spin sector it is only invariant under spin rotations
around the z axis; in contrast, Affleck and Ludwig derived
the NFL fixed point spectrum by assuming it to have the
complete U(1)c3SU(2)s3SU(2) f symmetry of the free
model. The fact that the low-energy part («!TK) of our
NFL fixed point spectrum coincides with theirs beautifully
illustrates how the broken symmetry of the original model is
restored in the vicinity of the NFL fixed point, and thus
proves another central assumption of the CFT solution of the
2CK model, in agreement with the NRG study of Pang and
Cox.17

The fact that the exact eigenenergies of H8 interpolate
smoothly between their values for l'50 and l'Þ0 @Fig.
3~b!# may at first seem somewhat surprising, because a com-
mon way of heuristically characterizing a NFL is that its
quasiparticles are orthogonal to the bare ones of the corre-

FIG. 3. Evolution of the many-body finite-size spectrum of the

2CK model, for antiperiodic boundary conditions (P051), from

the free Fermi-liquid fixed point to the NFL fixed point, and the

additional crossover induced by a local magnetic field to a phase-

shifted Fermi-liquid fixed point. All eigenstates of H8 of Eq. ~50!

are shown for which ENFL<1, as well as some higher-lying states,

with degeneracies given in brackets ~in Ref. 4, the degeneracies for

ENFL51 were incorrect!. ~a! When lz is tuned from 0 to its Emery-

Kivelson value lz51, with l'5«d50, the free Fermi-liquid spec-

trum E free at lz50 evolves smoothly into a simple phase-shifted

spectrum Ephase at lz51. ~b! When G/DL5l'

2 /(4aDL) is tuned

from 0 to ` along the EK line, i.e., with lz51 and «d50, the

spectrum crosses over from E phase to the non-Fermi-liquid spectrum

ENFL at G/DL5` , which agrees with NRG and CFT results. ~c!

Turning on a local magnetic field «d5h i ~with he50) by tuning

u«du/G from 0 to ` with lz51, G@DL fixed, then induces a further

crossover from ENFL to Eph . For the lowest levels this crossover

occurs when u«du/G*1, since then the crossover parameter used in

Fig. 2, namely, Th /DL5(«d /G)2(G/DL), is @1. The Eph spectrum

is identical to the phase-shifted spectrum Ephase of lz51 and l'

5«d50, apart from a degeneracy factor of 2 due to the lack of spin

reversal symmetry.

TABLE I. Summary of the finite-size spectrum of Fig. 3 for the

2CK model, at the four points lz5l'5«d50 (Efree); lz51, l'

5«d50 (Ephase); lz51, G/DL5` , «d50 (ENFL); and lz51,

G/DL5` , Th /DL5` (Eph). We list all energies E<1 ~in units of

DL) and give their total degeneracies in brackets.

Efree Ephase ENFL Eph

0 ~2! 0 ~2! 0 ~2! 0 ~1!

1/2 ~16! 1/4 ~8! 1/8 ~4! 1/4 ~4!

1 ~54! 1/2 ~12! 1/2 ~10! 1/2 ~6!

3/4 ~16! 5/8 ~12! 3/4 ~8!

1 ~34! 1 ~26! 1 ~17!
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sponding free Fermi liquid. This is referred to as the ‘‘break-
down of Landau’s quasiparticle construction,’’ since in Lan-
dau’s picture of a Fermi liquid, the dressed quasiparticles
and the corresponding bare ones have finite overlap. Here, in

fact, one can readily check that Sext
^0̃ua k̄ã«( k̄)

†
u0̃&Sext

is non-

zero @where «( k̄) is the excitation energy that reduces to k̄ as
G/DL→0], implying that in the a-basis the system is a
Fermi liquid. However, this does not contradict the fact that
in the original cka j basis the system nevertheless behaves as
a NFL, since the bosonization-refermionization relation be-
tween states in the a k̄ and cka j bases is very highly nonlin-
ear.

~iii! Crossover due to local magnetic field. Finally, we
turn on a local magnetic field, «d5h iÞ0 at fixed lz51 and
G/DL@1, thus breaking spin reversal symmetry. The further

evolution of the excitation energies « j ,P as functions of in-

creasing Th /DL , shown in Fig. 2~b!, yields the magnetic-

field-induced crossover, shown in Fig. 3~c!, from the NFL
fixed point energies ENFL to a set of energies Eph correspond-
ing to a phase-shifted Fermi liquid fixed point. For Th /DL

@1, the impurity level evidently becomes empty for all low-

lying states, ^cd
†cd&50, i.e., the impurity spin is frozen in the

state Sz5⇓ . Indeed, the spectrum Eph which one recovers is
precisely the same phase-shifted spectrum as Ephase at the
point lz51 and l'50, apart from a degeneracy factor of 2,
due to the lack of spin reversal symmetry, compare Table I.
This shows nicely how the magnetic field ‘‘erases’’ all traces
of NFL physics for the lowest-lying part of the spectrum,
since low-energy electrons cannot overcome the Zeeman en-
ergy cost for a spin flip in a magnetic field.

F. Finite-size behavior of physical quantities

Let us now briefly discuss the finite-size, T50 behavior
of the entropy, susceptibility, and the fluctuations in Nx at
the NFL fixed point. The entropy of the ground state at T

50, «d50 is evidently simply ln 2 for any L, since the
ground state is twofold degenerate ~see Fig. 3!. This should
be contrasted44 with the famous result 1

2 ln 2 that one
obtains23~c! taking the limit L→` before T→0. The differ-
ence simply illustrates that the order of limits does not com-
mute, since for finite L the system is always gapped.

The susceptibility at T50 due to a local field h i is defined

by x52]2ẼG /]h i
2 . Since ẼG5EG1dEG , we simply have

to evaluate @by Eqs. ~53!, ~62!# the sum x5
1
2 («(]2«/]h i

2).

For h i50, the summands can be determined by differentiat-
ing Eq. ~61!, giving

x~h i50 !5 (
«.0

1

«

4pGDL

$DL4pG1p@~4pG !2
1«2#%

~75!

'
1

4p2G
ln~4pG/DL! ~for G@DL!.

~76!

The fact that x(h i50)→` as L→` is of course a charac-
teristic sign of 2CK NFL physics: it illustrates the instability
of the NFL phase with respect to a local symmetry

breaking.40 At finite temperatures T takes over the role of the
infrared cutoff DL , so that the susceptibility diverges loga-
rithmically with T.19,2

The fluctuations in N̂x can be quantified by calculating

^N̂x
2&2^N̂x&

2. In Appendix C 6 this is done at «d50 for the

physical ground state of Sphys for both P50 and 1.37 We find

that ^N̂x&50 for arbitrary ratios of G/DL , showing that the
ground state contains equal amounts of spin from both fla-
vors j51,2, as expected from the 2CK model’s flavor sym-

metry. Furthermore, ^N̂x
2&5P/4 for G/D→0, as expected

intuitively, since in this limit the considered ground states
are linear combinations of states with Nx56P/2. In con-
trast, in the limit G/DL@1, the fluctuations diverge logarith-

mically with system size, ^N̂x
2&'(1/p2)ln GL, illustrating

how strongly the impurity perturbs the Fermi sea at the NFL
fixed point.

VI. RELATION TO VARIOUS RG METHODS

In the literature several RG methods have been applied to
the multichannel Kondo model. In this section we relate
these to our finite-size bosonization technique, by showing
how the strategies employed by them can be implemented, in
an exact way, within the latter.

A. High-energy cutoff scaling techniques

The most common types of RGs are the ones used in
particle physics and in the standard treatment of critical phe-
nomena. In these RG procedures, one reduces a high-energy

cutoff, say D̃ , in order to gradually eliminate some high-
energy degrees of freedom, arguing that they only slightly
influence the low-energy physics of the system. The change
in the cutoff must be compensated by rescaling the model’s
dimensionless coupling constants and masses in order to
keep the physical properties ~different inherent energy scales
and dressed masses! invariant. These kinds of scaling proce-
dures, which include Anderson’s poor man’s scaling,45 the
multiplicative RG,6 and the Yuval-Anderson RG,46 have
been widely used in the continuum limit (L→`) to study the
multichannel Kondo model.47,48,1,7,49

In our case the high-energy cutoff D̃ can be identified

with the cutoff 1/a of the boson fields fa j , D̃;1/a . Then
the scaling dimension g of an operator with dimensionless
coupling l can be determined from the scaling equation

d ln l/d ln D̃52d ln l/d ln a5g(l, . . . ), and the operator is
relevant, marginal or irrelevant for g,0, 50, or .0, re-
spectively.

Now, along the EK line one immediately obtains the scal-
ing equations27

dl'

d ln a
5

1

2
l' , lz[1. ~77!

The first, which follows from the requirement of the invari-

ance of the Kondo scale G5l'

2 /4a , shows that l' is relevant

and grows under bandwidth rescaling, with dimension 21/2.
As explained earlier, the second equation follows from the
absence of the leading irrelevant operator at the EK line.
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Equations ~77! exactly coincide with the ones obtained with
the Yuval-Anderson technique7

dl'

d ln a
5S 4

d

p
28

d2

p2Dl' , ~78a!

4

p

d d

d ln a
5S 12

4d

p
Dl'

2 , ~78b!

if in these the phase shift d5lzp/4 is replaced by p/4, as
appropriate for the EK line.17

In a finite local magnetic field «d5h i , for energies below

the scale Th5h i
2/G , the magnetic field destroys the non-

Fermi-liquid behavior and a Fermi liquid is recovered. By
requiring the invariance of Th one immediately derives that,
as long as the high-energy cutoff 1/a is much larger than the
Kondo scale G , the field h i must be invariant under the RG
transformation

dh i

d ln a
50 ~1/a@G !. ~79!

However, once the cutoff is reduced sufficiently so that
1/a!G , the role of G is taken over by 1/a , i.e., Th is now

given by h i
2 a , thus Eq. ~79! must be replaced by

dh i

d ln a
52

1

2
h i ~1/a!G !. ~80!

To determine the dimension of the magnetic field one has to
rewrite Eqs. ~80! and ~79! in terms of the dimensionless mag-

netic field, h̃[h ia . Then it immediately follows that close to
the NFL fixed point the local field has dimension 21/2 while
in the regime 1/a@G its dimension is 21; it is therefore
relevant in both cases.

Equations ~79! and ~80! are in complete agreement with
those obtained by the Yuval-Anderson technique.7 We re-
mark at this point that perpendicular local magnetic fields
hx ,y ~i.e., perturbations of the form hxSx or hySy) are known7

to scale differently from h i5hz , and at the EK line their
scaling dimension is known to be 21/2 even in the region
1/a@G .

B. Connection to numerical renormalization group

In this subsection we show that an analysis of our finite-
size spectrum as function of L in fact represents an analytical
version of Wilson’s NRG.50 In Wilson’s procedure one di-
vides the Fermi sea into energy shells using a logarithmic
mesh characterized by a parameter L.1, and then maps the
model onto an equivalent one in which the impurity is
coupled to the end of an infinite conducting chain, where the
hopping between the sites n and n11 scales as L2n/2. The
n’th site in this chain represents an ‘‘onion-skin’’ shell of
conduction electrons, characterized by spatial extent ;Ln/2

around the impurity site and energy ;L2n. The NRG trans-
formation is then defined by considering truncated chains of
length N with Hamiltonian HN , and consists of ~i! adding a
new site to the end of the chain HN→HN11 and ~ii! rescaling
the new Hamiltonian by L: HN11→LHN11. Trivially, step
~i! reduces the mean level spacing by a factor of 1/L , while
step ~ii! is needed to measure all energies in units of the new

mean level spacing. This strategy is implemented by numeri-
cally diagonalizing HN11 and retaining only the lowest few
hundred levels. One finds that after a number of iterations the
spectrum of HN converges to a fixed, universal set of ener-
gies, characteristic of some fixed point Hamiltonian.17 For
the 2CK model this spectrum16 is identical to the one ob-
tained by boundary CFT.18

The NRG strategy can easily be interpreted in terms of
our finite-size calculations. Step ~i! corresponds to increasing
the system size L→LL ~i.e., reducing the level spacing DL

→DLL5DL /L), while step ~ii! is equivalent to measuring
all energies in units of DLL . Combining both steps, an ‘‘ana-
lytical RG step’’ thus has the form

Hx~L ,G ,«d!

DL

→
Hx~LL ,G ,«d!

DLL

5

Hx~L ,LG ,L«d!

DL

,

~81!

where the last equality follows identically from Eq. ~52!. For
«d50 this means that increasing the system size at fixed G is
equivalent to increasing G at fixed L, emphasizing once more
that in this case the spectrum depends only on G/DL . There-
fore the ‘‘spectral flow’’ as function of G/DL in Fig. 3 can be
viewed as the analytical version of an NRG spectrum as a
function of iteration number.

The fact that changing the system size is equivalent to
rescaling the couplings has actually been exploited in several
NRG papers to construct the ‘‘exact’’ scaling trajectories in
the space of the bare couplings: this can be done by rescaling
the couplings after each NRG step in such a way that the
NRG spectrum remains invariant, as in the seminal paper of
Cragg, Lloyd, and Nozières,16 or equivalently in such a way
that the energy-dependent dynamical correlation functions
remain invariant.51

C. Finite-size scaling

It is also straightforward to implement Wilson’s
prescription52 for extracting the exact scaling exponent of a

perturbation around the fixed point, say dlÔ , from its effect
on the finite-size spectrum: In general, it causes the dimen-

sionless energy Ẽ(L) @of Eq. ~73!# ~calculated at a finite,
nonzero DL!G) to differ from its universal fixed point value

ENFL @of Eq. ~74!# by an amount d Ẽ(L), whose leading
asymptotic behavior for L→` is

d Ẽ~L ![ Ẽ~L !2ENFL;~dl/Lg!n, ~82!

where n>1 is some integer and g is the scaling dimension

of the operator Ô . Thus deviations from the universal spec-
trum are characteristic of the operator content of the fixed
point.

We first consider the situation on the EK line ~i.e., for
lz51), and close to the NFL fixed point, where DL /G and
Th /DL are both !1 ~at the NFL fixed point they are both 0!.
For j>1, the leading deviations « j ,P /DL2(« j ,P /DL)NFL of
the dimensionless single-particle excitation eigenenergies
from their NFL fixed point values are then given @from Eq.
~65!# by

6930 PRB 61GERGELY ZARÁND AND JAN von DELFT



d j ,P2~d j ,P!NFL5

1

4p2F Th

DL~ j2P/2!
2

DL~ j2P/2!

G
G .

~83!

The leading dependence on the local magnetic field via
Th /DL is evidently @h iL

1/2#2, which grows as L→` . This
shows that a local magnetic field has dimension gh i

521/2

and is relevant: for an arbitrarily small h i , there exists a
system size L above which the lowest part of the spectrum
and the ground state properties of the model are drastically
affected, namely when DL&Th , or equivalently, uh iu.hc

5AGDL , where hc denotes the crossover scale of section
V B.

In the absence of magnetic fields, the leading term in Eq.
~83! vanishes with increasing L as (GL)21, implying that the
least irrelevant irrelevant operator on the EK line has dimen-
sion gEK51. Thus, we conclude that the leading irrelevant
operators with dimension g51/2 that were found in the CFT
treatment23~d! are absent on the EK line, in agreement with
Refs. 2 and 26.

Now let us move away from the EK line by taking lz

511dlz , and do perturbation theory in dlz , i.e., in dHz8 of

Eq. ~35!. Then the operators with dimension g51/2 just
mentioned immediately show up: As shown in detail in Ap-
pendix C 7,37 we find that the ‘‘zero mode’’ term

dlzDLN̂sSz of ~35! ~which does not occur in the continuum
limit considered in Ref. 2!, affects the spectrum already in
first order in dlz : in the absence of magnetic fields, the first
excited states ~with ENFL51/8) are shifted relative to the
doubly degenerate ground states ~with ENFL50) by an
amount

d Ẽ~L !.2

1

4
dlz~114p2G/DL!21/2;L21/2. ~84!

This implies that the leading operator that appears as one
moves away from the EK line has dimension 1/2 and is
irrelevant. Thus, the EK line is stable against perturbations

away from it.

In the presence of a local magnetic field «d5h i , one finds
in the continuum limit DL!G ,h i that the ground state degen-
eracy is split by an amount

d Ẽ~L !5H dlz

2p2

uh iu

G
ln

uh iu

4pG
~DL!h i!G !,

dlz

2
S 12

4G

uh iu
D ~DL!G!h i!.

~85!

This shows that the magnetic-field behavior along the EK
line is not completely generic, since it misses this part of the
h i dependence of the magnetic-field-induced crossover. Note
that the uh iu/G lnuhiu/G behavior that occurs for a local mag-
netic field of intermediate strength is consistent with the con-
clusions of the NRG studies of Ref. 18 for the h i-dependence
of a certain phase shift that can be used to characterize the
NRG spectra.

Finally, we would like to comment here on the identifica-
tion of the Kondo scale TK . In Sec. V B we showed that the
crossover scale below which the finite-size spectrum takes its
fixed-point form ~at h i50) was G , and hence concluded that

TK.G . This differs from the suggestion of Sengupta and
Georges26 that the Kondo scale in the anisotropic 2CK model
close to the EK line is not G but rather G/(dlz)

2. This scale
emerged naturally in their calculation of the total susceptibil-
ity enhancement due to the impurity, which yielded x imp

;(dlz)
2/G ln(G/T) ~at h i50). However, the factor (dlz)

2

only expresses the fact that the amplitudes of the leading
irrelevant operators vanish on the EK line, so that the char-
acteristic logarithmic features appear only in second order in
dlz . The fact that the scale above which these logarithmic
features vanish is T.G , not T.G/(dlz)

2, supports our
above conclusion that it is rather G that should be identified
as the Kondo scale.

VII. SINGLE-CHANNEL KONDO MODEL

The methods used above can also be applied, with minor
modifications, to the single-channel Kondo ~1CK! model.
This is done in Appendix D. The main difference to the 2CK
case is of course that both the weak and strong-coupling
fixed points are Fermi liquids, but they are again connected
by a line, called the ‘‘Toulouse point,’’ along which the
model is exactly solvable. The main results of Appendix D
are summarized in Fig. 4, which shows the finite-size cross-
over spectrum of the 1CK model. It nicely illustrates the fact,
first discussed by Wilson,50 that both the two weak- and
strong-coupling fixed-point spectra correspond to free fermi-
ons, which satisfy, however, different boundary conditions
~antiperiodic or periodic, respectively!.

VIII. DISCUSSION AND CONCLUSIONS

The main general conclusion of our work is that construc-
tive finite-size bosonization is an unexpectedly powerful tool

FIG. 4. Evolution of the many-body finite-size spectrum of the

1CK model, for antiperiodic boundary conditions (P051), from

the free Fermi-liquid fixed point to the strong-coupling Fermi-liquid

fixed point. All eigenstates of H8 of Eq. ~D28! are shown for which

EFL<1, as well as some higher-lying states, with degeneracies

given in brackets. ~a! When lz is tuned from 0 to its Toulouse-point

value lz
*522A2, with l'5«d50, the free Fermi-liquid spectrum

Efree at lz50 evolves smoothly into a simple phase-shifted spec-

trum Ephase at lz5lz
* . ~b! When G/DL5l'

2 /(4aDL) is tuned from

0 to ` at the Toulouse point, i.e., with lz5lz
* and «d50, the

spectrum crosses over from Ephase to the strong-coupling Fermi-

liquid spectrum EFL at G/DL5` . The latter is identical to the free

Fermi-liquid spectrum (lz5l'5«d50) for periodic boundary

conditions (P050), in agreement with Wilson’s NRG results

~Ref. 50!.
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for investigating quantum impurity problems. First, for the
2CK model, it enables one to analytically calculate by el-

ementary means the crossover along the EK line of the finite-

size spectrum ~and the corresponding eigenstates! between
the free Fermi liquid and the NFL fixed point. Although the
fixed point spectrum had already been obtained by means of
conformal field theory,23,26 this crossover had hitherto been
tractable only with the NRG, and has been beyond the reach
of all analytical approaches used to study this model. More-
over, the ability to treat the crossover explicitly allowed us to
prove in a direct way the two central assumptions on which
Affleck and Ludwig’s very elegant CFT solution is based,
namely, that spin anisotropy is irrelevant so that the NFL
fixed point has the same U(1)c3SU(2)s3SU(2) f symmetry
as the free model, and the fusion hypothesis for the operator
content of the NFL fixed point.

Secondly, finite-size bosonization can deal without much

additional effort with symmetry-breaking perturbations, such
as a finite magnetic field ~or channel symmetry breaking,13

which was not discussed here, but can be included by a
straightforward extension of our methods!. Indeed, it is to be
expected that the methods developed here can fruitfully be
applied to a number of related quantum impurity problems.
For example, an adaption of our finite-size refermionization
approach was very recently used to rigorously resolve a re-
cent controversy regarding the tunneling density of states at
the site of an impurity in a Luttinger liquid.31 Other potential
applications would be to the generalized Kondo models stud-
ied by Ye,27 or by Moustakas and Fisher,25,53 or by Kotliar
and Si.28

Thirdly, finite-size bosonization allows one to mimic in an

exact way the strategy of standard RG approaches such as
poor man’s bandwidth rescaling and finite-size scaling; thus
it should be useful also as a pedagogical tool for teaching
and analytically illustrating RG ideas.

Coleman and co-workers12,13 have proposed a ‘‘pedestrian
solution’’ of the 2CK model, in which it is argued that many
of its properties can be calculated using a so-called ‘‘com-
pactified model’’ involving only a single channel of spinful
conduction electrons. This model was argued to represent
that part of the 2CK model that is left over when one ‘‘fac-
torizes out’’ the charge and flavor degrees of freedom. In-
deed, using field-theoretic bosonization, Schofield showed
that there is a formal correspondence between the compacti-
fied model and our H' of Eq. ~27! ~which involves only ws

and wx), and that it yields the same results as the 2CK model
for the impurity contribution to thermodynamical properties.
In this sense, the compactified model can be viewed as an
effective model for calculating impurity properties. How-
ever, as first emphasized by Ye,27 it is not equivalent to the
original 2CK model, since Schofield’s arguments ignored the

fact that there are gluing conditions such as Eq. ~20! between
the c , f sectors and the s ,x sectors. As long as these are
ignored, the compactified model can not be used to calculate
conduction electron properties, since that requires adding
back the contributions from the charge and flavor channels.

Our constructive bosonization approach allowed us to
clarify this issue completely: it makes precise in what sense
the c and f sectors can be ‘‘factorized out,’’ rigorously yields
an appropriate model for the remaining s and x sectors, em-
phasizes the gluing conditions between the c , f and s ,x sec-
tors, and shows how they can be used at the NFL fixed point
to combine the contributions from all four sectors to obtain
the NFL fixed point spectrum. @An alternative way of doing
this explicitly was found by Bradley, Bulla, Hewson, and
Zhang,15 using the equivalence of the compactified model to
a certain O~3! symmetric Anderson model.#

Maldacena and Ludwig30 have used CFT to show that
Affleck and Ludwig’s CFT solution can be reformulated in
terms of free boson fields wy(x) satisfying certain asymptotic
boundary conditions. Ye27 reproduced this result using field-
theoretic bosonization at the EK line ~in the continuum limit!
invoking scaling arguments. We have shown in Ref. 4 ~and
will elaborate this in a future publication36! that these results
can be reproduced with great ease by simply taking the con-
tinuum limit L→` of our above finite-size calculation. In
fact, this allows us to check explicitly Affleck and Ludwig’s
results for electronic correlations functions.

In summary, using finite-size bosonization we have calcu-
lated analytically and from first principles, but in a concep-
tually straightforward way, the crossover of the finite-size
spectrum of the 2CK model from the free to the NFL fixed
point. This enabled us to elucidate the nature of the NFL
excitations and to perform a detailed finite-size scaling
analysis of the NFL fixed point.
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The appendices of this paper may be found in Ref. 37.
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