Submitted Papers

[∗] Machine-learning Kondo physics using variational autoencoders
Cole Miles, Matthew R. Carbone, Erica J. Sturm, Deyu Lu, Andreas Weichselbaum, Kipton Barros, and Robert M. Konik
arXiv:2107.08013 [cond-mat.str-el]
[∗] Abelian SU(N)_1 Chiral Spin Liquids on the Square Lattice
Ji-Yao Chen, Jheng-Wei Li, Pierre Nataf, Sylvain Capponi, Matthieu Mambrini, Keisuke Totsuka, Hong-Hao Tu, Andreas Weichselbaum, Jan von Delft, and Didier Poilblanc
arXiv:2106.02115 [cond-mat.str-el]
[∗] Quantum Spin Liquid with Emergent Chiral Order in the Triangular-lattice Hubbard Model
Bin-Bin Chen, Ziyu Chen, Shou-Shu Gong, D. N. Sheng, Wei Li, and Andreas Weichselbaum
arXiv:2102.05560 [cond-mat.str-el]

Papers Published in Peer-Reviewed Journals

[78] Differentiating Hund from Mott physics in a three-band Hubbard-Hund model: Temperature dependence of spectral, transport, and thermodynamic properties
K. M. Stadler, G. Kotliar, S.-S. B. Lee, A. Weichselbaum, and J. von Delft
Phys. Rev. B 104, 115107 (2021)
[77] Predicting impurity spectral functions using machine learning
Erica J. Sturm, Matthew R. Carbone, Deyu Lu, Andreas Weichselbaum, and Robert M. Konik
Phys. Rev. B 103, 245118 (2021)
[76] Dimerization and spin decoupling in a two-leg Heisenberg ladder with frustrated trimer rungs
Andreas Weichselbaum, Weiguo Yin, and Alexei M. Tsvelik
Phys. Rev. B 103, 125120 (2021)
[75] Study of spin symmetry in the doped t-J model using infinite projected entangled pair states
Jheng-Wei Li, Benedikt Bruognolo, Andreas Weichselbaum, and Jan von Delft
Phys. Rev. B 103, 075127 (2021)
[74] A beginner's guide to non-abelian iPEPS for correlated fermions
Benedikt Bruognolo, Jheng-Wei Li, Jan von Delft, and Andreas Weichselbaum
SciPost Phys. Lect. Notes 25 (2021)
[73] Quantum many-body simulations of the two-dimensional Fermi-Hubbard model in ultracold optical lattices
Bin-Bin Chen, Chuang Chen, Ziyu Chen, Jian Cui, Yueyang Zhai, Andreas Weichselbaum, Jan von Delft, Zi Yang Meng, and Wei Li
Phys. Rev. B 103, L041107 (2021)
[72] Renormalized Lindblad driving: A numerically exact nonequilibrium quantum impurity solver
Matan Lotem, Andreas Weichselbaum, Jan von Delft, and Moshe Goldstein
Phys. Rev. Research 2, 043052 (2020)
[71] Uncovering Non-Fermi-Liquid Behavior in Hund Metals: Conformal Field Theory Analysis of an SU(2)×SU(3) Spin-Orbital Kondo Model
E. Walter, K. M. Stadler, S.-S. B. Lee, Y. Wang, G. Kotliar, A. Weichselbaum, and J. von Delft
Phys. Rev. X 10, 031052 (2020)
[70] X-symbols for non-Abelian symmetries in tensor networks
Andreas Weichselbaum
Phys. Rev. Research 2, 023385 (2020)
[69] Global Phase Diagram of a Spin-Orbital Kondo Impurity Model and the Suppression of Fermi-Liquid Scale
Y. Wang, E. Walter, S.-S. B. Lee, K. M. Stadler, J. von Delft, A. Weichselbaum, and G. Kotliar
Phys. Rev. Lett. 124, 136406 (2020)
[68] Orbital differentiation in Hund metals
Fabian B. Kugler, Seung-Sup B. Lee, Andreas Weichselbaum, Gabriel Kotliar, and Jan von Delft
Phys. Rev. B 100, 115159 (2019)
[67] Thermal tensor renormalization group simulations of square-lattice quantum spin models
Han Li, Bin-Bin Chen, Ziyu Chen, Jan von Delft, Andreas Weichselbaum, and Wei Li
Phys. Rev. B 100, 045110 (2019)
[66] Hundness versus Mottness in a three-band Hubbard-Hund model: on the origin of strong correlations in Hund metals
K.M. Stadler, G. Kotliar, A. Weichselbaum, and J. von Delft
Annals of Physics 405, 365 (2019)
[65] Signatures of Mottness and Hundness in archetypal correlated metals
Xiaoyu Deng, Katharina M. Stadler, Kristjan Haule, Andreas Weichselbaum, Jan von Delft, and Gabriel Kotliar
Nature Comm. 10, 2721 (2019)
[64] Two-temperature scales in the triangular-lattice Heisenberg antiferromagnet
Lei Chen, Dai-Wei Qu, Han Li, Bin-Bin Chen, Shou-Shu Gong, Jan von Delft, Andreas Weichselbaum, and Wei Li
Phys. Rev. B 99, 140404 (2019)
[63] Nontopological Majorana Zero Modes in Inhomogeneous Spin Ladders
Neil J. Robinson, Alexander Altland, Reinhold Egger, Niklas M. Gergs, Wei Li, Dirk Schuricht, Alexei M. Tsvelik, Andreas Weichselbaum, and Robert M. Konik
Phys. Rev. Lett. 122, 027201 (2019)
[62] Nonequilibrium Steady-State Transport in Quantum Impurity Models: A Thermofield and Quantum Quench Approach Using Matrix Product States
F. Schwarz, I. Weymann, J. von Delft, and A. Weichselbaum
Phys. Rev. Lett. 121, 137702 (2018)
[61] Exponential Thermal Tensor Network Approach for Quantum Lattice Models
Bin-Bin Chen, Lei Chen, Ziyu Chen, Wei Li, and Andreas Weichselbaum
Phys. Rev. X 8, 031082 (2018)
[60] Unified phase diagram of antiferromagnetic SU(N) spin ladders
A. Weichselbaum, S. Capponi, P. Lecheminant, A. M. Tsvelik, and A. M. Läuchli
Phys. Rev. B 98, 085104 (2018)
[59] At which magnetic field, exactly, does the Kondo resonance begin to split? A Fermi liquid description of the low-energy properties of the Anderson model
Michele Filippone, Cătălin Paşcu Moca, Andreas Weichselbaum, Jan von Delft, and Christophe Mora
Phys. Rev. B 98, 075404 (2018)
[58] Filling-driven Mott transition in SU(N) Hubbard models
Seung-Sup B. Lee, Jan von Delft, and Andreas Weichselbaum
Phys. Rev. B 97, 165143 (2018)
[57] Emergent spin-1 trimerized valence bond crystal in the spin-1/2 Heisenberg model on the star lattice
Shi-Ju Ran, Wei Li, Shou-Shu Gong, Andreas Weichselbaum, Jan von Delft, and Gang Su
Phys. Rev. B 97, 075146 (2018)
[56] Generalized Schrieffer-Wolff transformation of multiflavor Hubbard models
Seung-Sup B. Lee, Jan von Delft, and Andreas Weichselbaum
Phys. Rev. B 96, 245106 (2017)
[55] Doublon-Holon Origin of the Subpeaks at the Hubbard Band Edges
Seung-Sup B. Lee, Jan von Delft, and Andreas Weichselbaum
Phys. Rev. Lett. 119, 236402 (2017)
[54] Open Wilson chains for quantum impurity models: Keeping track of all bath modes
B. Bruognolo, N.-O. Linden, F. Schwarz, S.-S. B. Lee, K. Stadler, A. Weichselbaum, M. Vojta, F. B. Anders, and J. von Delft
Phys. Rev. B 95, 121115 (2017)
[53] Adaptive broadening to improve spectral resolution in the numerical renormalization group
Seung-Sup B. Lee, and Andreas Weichselbaum
Phys. Rev. B 94, 235127 (2016)
[52] Lindblad-driven discretized leads for nonequilibrium steady-state transport in quantum impurity models: Recovering the continuum limit
F. Schwarz, M. Goldstein, A. Dorda, E. Arrigoni, A. Weichselbaum, and J. von Delft
Phys. Rev. B 94, 155142 (2016)
[51] Dynamic structure factor of the spin-1/2 XXZ chain in a transverse field
Benedikt Bruognolo, Andreas Weichselbaum, Jan von Delft, and Markus Garst
Phys. Rev. B 94, 085136 (2016)
[50] Interleaved numerical renormalization group as an efficient multiband impurity solver
K. M. Stadler, A. K. Mitchell, J. von Delft, and A. Weichselbaum
Phys. Rev. B 93, 235101 (2016)
[49] Thermalization and dynamics in the single-impurity Anderson model
Ireneusz Weymann, Jan von Delft, and Andreas Weichselbaum
Phys. Rev. B 92, 155435 (2015)
[48] Dynamical mean-field theory plus Numerical Renormalization Group study of spin-orbital separation in a three-band Hund metal
K. M. Stadler, Z. P. Yin, J. von Delft, G. Kotliar, and A. Weichselbaum
Phys. Rev. Lett. 115, 136401 (2015)
[47] Symmetric minimally entangled typical thermal states
Benedikt Bruognolo, Jan von Delft, and Andreas Weichselbaum
Phys. Rev. B 92, 115105 (2015)
[46] Hexagon-singlet solid ansatz for the spin-1 Kagome antiferromagnet
Wei Li, Andreas Weichselbaum, Jan von Delft, and Hong-Hao Tu
Phys. Rev. B 91, 224414 (2015)
[45] Simplex valence-bond crystal in the spin-1 Kagome Heisenberg antiferromagnet
Tao Liu, Wei Li, Andreas Weichselbaum, Jan von Delft, and Gang Su
Phys. Rev. B 91, 060403 (2015)
[44] Two-bath spin-boson model: Phase diagram and critical properties
Benedikt Bruognolo, Andreas Weichselbaum, Cheng Guo, Jan von Delft, Imke Schneider, and Matthias Vojta
Phys. Rev. B 90, 245130 (2014)
[43] Transmission Phase in the Kondo Regime Revealed in a Two-Path Interferometer
S. Takada, C. Bäuerle, M. Yamamoto, K. Watanabe, S. Hermelin, T. Meunier, A. Alex, A. Weichselbaum, J. von Delft, A. Ludwig, A. D. Wieck, and S. Tarucha
Phys. Rev. Lett. 113, 126601 (2014)
[42] Non-Fermi-liquid behavior in nonequilibrium transport through Co-doped Au chains connected to fourfold symmetric leads
S. Di Napoli, P. Roura-Bas, Andreas Weichselbaum, and A. A. Aligia
Phys. Rev. B 90, 125149 (2014)
[41] Equilibrium Fermi-liquid coefficients for the fully screened N-channel Kondo model
M. Hanl, A. Weichselbaum, J. von Delft, and M. Kiselev
Phys. Rev. B 89, 195131 (2014)
[40] Local susceptibility and Kondo scaling in the presence of finite bandwidth
Markus Hanl, and Andreas Weichselbaum
Phys. Rev. B 89, 075130 (2014)
[39] Identifying Symmetry-Protected Topological Order by Entanglement Entropy
W. Li, A. Weichselbaum, and J. von Delft
Phys. Rev. B 88, 245121 (2013)
[38] Proposed Rabi-Kondo Correlated State in a Laser-Driven Semiconductor Quantum Dot
B. Sbierski, M. Hanl, A. Weichselbaum, H. E. Türeci, M. Goldstein, L. I. Glazman, J. von Delft, and A. Imamoglu
Phys. Rev. Lett. 111, 157402 (2013)
[37] Nonequilibrium dynamics in an optical transition from a neutral quantum dot to a correlated many-body state
F. Haupt, S. Smolka, M. Hanl, W. Wüster, J. Miguel-Sanchez, A. Weichselbaum, J. von Delft, and A. Imamoglu
Phys. Rev. B 88, 161304 (2013)
[36] Iron impurities in gold and silver: Comparison of transport measurements to numerical renormalization group calculations exploiting non-Abelian symmetries
M. Hanl, A. Weichselbaum, T. A. Costi, F. Mallet, L. Saminadayar, C. Bäuerle, and J. von Delft
Phys. Rev. B 88, 075146 (2013)
[35] Non-Fermi-Liquid Behavior in Transport Through Co-Doped Au Chains
S. Di Napoli, A. Weichselbaum, P. Roura-Bas, A. A. Aligia, Y. Mokrousov, and S. Blügel
Phys. Rev. Lett. 110, 196402 (2013)
[34] Tensor networks and the numerical renormalization group
Andreas Weichselbaum
Phys. Rev. B 86, 245124 (2012)
[33] Non-abelian symmetries in tensor networks: A quantum symmetry space approach
Andreas Weichselbaum
Annals of Physics 327, 2972 (2012)
[32] Full density-matrix numerical renormalization group calculation of impurity susceptibility and specific heat of the Anderson impurity model
L. Merker, A. Weichselbaum, and T. A. Costi
Phys. Rev. B 86, 075153 (2012)
[31] Anderson orthogonality in the dynamics after a local quantum quench
Wolfgang Münder, Andreas Weichselbaum, Moshe Goldstein, Yuval Gefen, and Jan von Delft
Phys. Rev. B 85, 235104 (2012)
[30] Critical and Strong-Coupling Phases in One- and Two-Bath Spin-Boson Models
Cheng Guo, Andreas Weichselbaum, Jan von Delft, and Matthias Vojta
Phys. Rev. Lett. 108, 160401 (2012)
[29] Incommensurate correlations in the anisotropic triangular Heisenberg lattice
Andreas Weichselbaum, and Steven R. White
Phys. Rev. B 84, 245130 (2011)
[28] Spin-1/2 Kondo effect in an InAs nanowire quantum dot: Unitary limit, conductance scaling, and Zeeman splitting
Andrey V. Kretinin, Hadas Shtrikman, David Goldhaber-Gordon, Markus Hanl, Andreas Weichselbaum, Jan von Delft, Theo Costi, and Diana Mahalu
Phys. Rev. B 84, 245316 (2011)
[27] Discarded weight and entanglement spectra in the numerical renormalization group
Andreas Weichselbaum
Phys. Rev. B 84, 125130 (2011)
[26] Anderson orthogonality and the numerical renormalization group
Andreas Weichselbaum, Wolfgang Münder, and Jan von Delft
Phys. Rev. B 84, 075137 (2011)
[25] Quantum quench of Kondo correlations in optical absorption
Christian Latta, Florian Haupt, Markus Hanl, Andreas Weichselbaum, Martin Claassen, Wolf Wuester, Parisa Fallahi, Stefan Faelt, Leonid Glazman, Jan von Delft, Hakan E. Türeci, and Atac Imamoglu
Nature 474, 627 (2011)
[24] Chebyshev matrix product state approach for spectral functions
Andreas Holzner, Andreas Weichselbaum, Ian P. McCulloch, Ulrich Schollwöck, and Jan von Delft
Phys. Rev. B 83, 195115 (2011)
[23] Many-Body Dynamics of Exciton Creation in a Quantum Dot by Optical Absorption: A Quantum Quench towards Kondo Correlations
Hakan E. Türeci, M. Hanl, M. Claassen, A. Weichselbaum, T. Hecht, B. Braunecker, A. Govorov, L. Glazman, A. Imamoglu, and J. von Delft
Phys. Rev. Lett. 106, 107402 (2011)
[22] Asymmetric spin-1/2 two-leg ladders: Analytical studies supported by exact diagonalization, DMRG, and Monte Carlo simulations
D. N. Aristov, C. Brünger, F. F. Assaad, M. N. Kiselev, A. Weichselbaum, S. Capponi, and F. Alet
Phys. Rev. B 82, 174410 (2010)
[21] Correlation density matrices for one-dimensional quantum chains based on the density matrix renormalization group
W. Münder, A. Weichselbaum, A. Holzner, J. von Delft, and C. L. Henley
New J. of Phys. 12, 075027 (2010)
[20] Matrix product state approach for a two-lead multilevel Anderson impurity model
Andreas Holzner, Andreas Weichselbaum, and Jan von Delft
Phys. Rev. B 81, 125126 (2010)
[19] Variational matrix-product-state approach to quantum impurity models
A. Weichselbaum, F. Verstraete, U. Schollwöck, J. I. Cirac, and Jan von Delft
Phys. Rev. B 80, 165117 (2009)
[18] Constrained optimization of sequentially generated entangled multiqubit states
Hamed Saberi, Andreas Weichselbaum, Lucas Lamata, David Pérez-García, Jan von Delft, and Enrique Solano
Phys. Rev. A 80, 022334 (2009)
[17] Quantum Criticality Perspective on the Charging of Narrow Quantum-Dot Levels
V. Kashcheyevs, Christoph Karrasch, Theresa Hecht, Andreas Weichselbaum, Volker Meden, and Avraham Schiller
Phys. Rev. Lett. 102, 136805 (2009)
[16] Interplay of mesoscopic and Kondo effects for transmission amplitude of few-level quantum dots
T. Hecht, A. Weichselbaum, Y. Oreg, and J. von Delft
Phys. Rev. B 80, 115330 (2009)
[15] Density matrix renormalization group study of a quantum impurity model with Landau-Zener time-dependent Hamiltonian
Cheng Guo, Andreas Weichselbaum, Stefan Kehrein, Tao Xiang, and Jan von Delft
Phys. Rev. B 79, 115137 (2009)
[14] Kondo Decoherence: Finding the Right Spin Model for Iron Impurities in Gold and Silver
T. A. Costi, L. Bergqvist, A. Weichselbaum, J. von Delft, T. Micklitz, A. Rosch, P. Mavropoulos, P. H. Dederichs, F. Mallet, L. Saminadayar, and C. Bäuerle
Phys. Rev. Lett. 102, 056802 (2009)
[13] Matrix-product-state comparison of the numerical renormalization group and the variational formulation of the density-matrix renormalization group
Hamed Saberi, Andreas Weichselbaum, and Jan von Delft
Phys. Rev. B 78, 035124 (2008)
[12] Numerical renormalization group calculation of near-gap peaks in spectral functions of the Anderson model with superconducting leads
Theresa Hecht, Andreas Weichselbaum, Jan von Delft, and Ralph Bulla
J. Phys. Cond. Mat. 20, 275213 (2008)
[11] Modeling of quantum point contacts in high magnetic fields and with current bias outside the linear response regime
Sefa Arslan, E. Cicek, D. Eksi, S. Aktas, Andreas Weichselbaum, and Afif Siddiki
Phys. Rev. B 78, 125423 (2008)
[10] Sum-Rule Conserving Spectral Functions from the Numerical Renormalization Group
Andreas Weichselbaum, and Jan von Delft
Phys. Rev. Lett. 99, 076402 (2007)
[9] Phase lapses in transmission through interacting two-level quantum dots
Christoph Karrasch, Theresa Hecht, Andreas Weichselbaum, Jan von Delft, Yval Oreg, and Volker Meden
New J. of Phys. 9, 123 (2007)
[8] Mesoscopic to Universal Crossover of the Transmission Phase of Multilevel Quantum Dots
Christoph Karrasch, Theresa Hecht, Andreas Weichselbaum, Yval Oreg, Jan von Delft, and Volker Meden
Phys. Rev. Lett. 98, 186802 (2007)
[7] Tunability of qubit Coulomb interaction: Numerical analysis of top-gate depletion in two-dimensional electron systems
A. Weichselbaum, and S. E. Ulloa
Phys. Rev. B 74, 085318 (2006)
[6] Aharonov-Bohm phase as quantum gate in two-electron charge qubits
A. Weichselbaum, and S. E. Ulloa
Phys. Rev. B 70, 195332 (2004)
[5] Spatially Resolved Manipulation of Single Electrons in Quantum Dots Using a Scanned Probe
A. Pioda, S. Kičin, T. Ihn, M. Sigrist, A. Fuhrer, K. Ensslin, A. Weichselbaum, S. E. Ulloa, M. Reinwald, and W. Wegscheider
Phys. Rev. Lett. 93, 216801 (2004)
[4] Charge qubits and limitations of electrostatic quantum gates
A. Weichselbaum, and S. E. Ulloa
Phys. Rev. A 70, 032328 (2004)
[3] Potential landscapes and induced charges near metallic islands in three dimensions
A. Weichselbaum, and S. E. Ulloa
Phys. Rev. E 68, 056707 (2003)
[2] Electron Dynamics near a Metallic Island Array
Andreas Weichselbaum, and Sergio E. Ulloa
Phys. Stat. Sol. B 230, 325 (2002)
[1] Polarization-dependent intersubband absorption and normal-incidence infrared detection in p-type Si/SiGe quantum wells
P. Kruck, A. Weichselbaum, M. Helm, T. Fromherz, G. Bauer, J. F. Nützel, and G. Abstreiter
Superlattices and Microstructures 23, 61 (1998)

Conference Proceedings

[3] Charge qubits and limitations of electrostatic quantum gates
A. Weichselbaum, and S.E. Ulloa
Physica E: Low-dimensional Systems and Nanostructures 26, 342
proceedings 3rd International Conference on Quantum Dots (QD 2004, Banff) (2005)
[2] Decoherence of charge qubit systems
A. Weichselbaum, and S.E. Ulloa
Physics of Semiconductors, Pts A and B (AIP conference proceedings) 772, 1467
proceedings 27th International Conference on the Physics of Semiconductors (ICPS-27, Flagstaff) (2005)
[1] IR studies of p-type Si/SiGe quantum wells: intersubband absorption, IR detectors, and second-harmonic generation
M. Helm, P. Kruck, T. Fromherz, A. Weichselbaum, M. Seto, G. Bauer, Z. Moussa, P. Boucaud, F. H. Julien, J. -M. Lourtioz, J. F. Nützel, and G. Abstreiter
Thin Solid Films 294, 330
proceedings European-Materials-Research-Society 1996 Spring Meeting, Strasbourg (1997)

Thesis

[3] Tensor networks and the numerical renormalization group
Andreas Weichselbaum, Habilitation thesis, Ludwig Maximilians University, Munich, Germany (2012)
[2] Nanoscale quantum dynamics and electrostatic coupling
Andreas Weichselbaum, Ph. D. thesis, Ohio University, Athens, OH, US (2004)
Advisor: Sergio E. Ulloa
[1] Infrared Detectors on the Basis of Si/SiGe Heterostructures
Andreas Weichselbaum, Diploma thesis (in German), Johannes Kepler Univerität, Linz, Austria (1997)
Supervisor: Manfred Helm